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Abstract. We present a semi-analytic approach to solving the
Boltzmann equation describing the comptonisation of low fre-
quency input photons by a thermal distribution of electrons in
the Thomson limit. Our work is based on the formulation of
the problem by Titarchuk & Lyubarskij (1995), but extends
their treatment by accommodating an arbitrary anisotropy of
the source function. To achieve this, we expand the eigenfunc-
tions of the integro/differential eigenvalue problem defining the
spectral index of comptonised radiation in terms of Legendre
polynomials and Chebyshev polynomials. The resulting alge-
braic eigenvalue problem is then solved by numerical means,
yielding the spectral index and the full angular and spatial depen-
dence of the specific intensity of radiation. For a thin (19 < 1)
plasma disk, the radiation is strongly collimated along the disk
surface — for an optical thickness of 7y = 0.05, the radiation
intensity along the surface is roughly ten times that along the
direction of the normal, and varies only slightly with the electron
temperature. Our results for the spectral index confirm those of
Titarchuk & Lyubarskij over a wide range of electron tempera-
ture and optical depth; the largest difference we find is roughly
10% and occurs at low optical depth.
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1. Introduction

The process of Comptonisation, in which soft photons increase
their energy by scattering in a gas of hot electrons is thought to
be the main mechanism responsible for the formation of non-
thermal continuum spectrum in a range of astrophysical objects.
Much of the early work on this subject assumed that the optical
depth of the scattering cloud was fairly large, and that the photon
frequency v and electron temperature 7, were both small: x =
hv/mec* < 1,0 = kgT,/mec*> < 1. The transport of a photon
in both configuration space and in energy space can then be

Send offprint requests to: U.D.J. Gieseler

approximated by a Fokker-Planck equation and the computation
of the spectrum can be split into two parts — the evaluation of the
distribution of the number of scatterings undergone by a photon,
and the convolution of this with the solution for the evolution
of the spectrum in an infinite homogeneous medium (Sunyaev
& Titarchuk 1980).

In the wake of this important result, many authors have in-
vestigated methods of extending the range of applicability of
the calculations, e.g., by calculating corrections to the diffusion
coefficient in energy space to higher order in the parameters ©
and = (Prasad et al. 1988; see also Cooper 1971). Of particu-
lar interest is the generalisation to scattering media of optical
depth 7 ~ 1, since such conditions are indicated in many ap-
plications (e.g., AGN: Haardt et al. 1994; Zdziarski et al. 1995
and galactic black hole candidates Sunyaev & Triimper 1979;
Ebisawa et al. 1996). Thus, Sunyaev & Titarchuk (1985) pre-
sented a numerical solution to the spatial transport of photons in
slab geometry. Assuming the problem remains separable, this
can be combined with the solution for diffusion in energy space
to yield the emergent spectrum. These and other generalisa-
tions are summarised by Titarchuk (1994), who also pointed out
that the angular distribution of comptonised radiation emerging
from an optically thin disk forms a ‘knife-blade’ pattern, colli-
mated almost parallel to the surface of the disk. In addition to
analytic work, comptonisation has been investigated using nu-
merical methods (Katz 1976; Poutanen & Svensson 1996), in
particular the Monte-Carlo simulation technique (Pozdnyakov
et al. 1983; Zdziarski 1986; Hua & Titarchuk 1995; Stern et
al. 1995a, 1995b).

In a recent paper, Titarchuk & Lyubarskij (1995) have at-
tacked the problem using the Boltzmann equation, without re-
course to a Fokker-Planck approximation in either configuration
or energy space. As well as confirming the result that power-law
spectra are produced when low frequency photons are scattered
in the Thomson regime (i.e, when the dimensionless photon en-
ergy x’ measured in the electron rest frame satisfies ' < 1),
they demonstrate explicitly the separation of the problem into its
configuration and energy space parts, provided that the source
function can be considered isotropic. In this case, the prob-
lem reduces to an eigenvalue equation for the source function.
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Titarchuk & Lyubarskij also provide analytic approximations
for the computation of the power-law index « over a very large
range of optical depth and temperature.

In this paper we generalise the approach of Titarchuk &
Lyubarskij (1995) by solving the Boltzmann equation without
assuming isotropy of either the radiation or the source function.
The approach we adopt is to formulate the equation determin-
ing the power-law index as an integral eigenvalue problem. To
find the eigenfunctions, we expand the angular dependence in
a series of Legendre polynomials, and the spatial dependence
in a series of Chebyshev polynomials. Our results confirm the
accuracy of the formulae presented by Titarchuk & Lyubarskij
(1995) and also give the full spatial and angular dependences of
the comptonised radiation. As predicted by Titarchuk (1994),
the radiation from an optically thin slab is strongly collimated
along the surface of the slab.

The paper is laid out as follows: in Sect. 2 we present the
equations leading to the formulation of the integral eigenvalue
problem for the power-law index a. Sect. 3 (and in more de-
tail the appendix) presents the method of solution. The phase
function is first of all expanded in terms of Legendre polyno-
mials of the scattering angle and the integration over electron
velocity is performed in the case of low temperature (0 < 1)
and high temperature (© > 1). Then, using an expansion in
Legendre polynomials which are complete over the half-range
0 < p < 1 of the cosine of the angle between the photon di-
rection and the normal to the slab, the problem is converted to a
system of differential equations in the spatial coordinate normal
to the disk surface. This is finally reduced to an algebraic eigen-
value problem by expanding the spatial dependence in a series of
Chebyshev polynomials. Singular value decomposition is then
used to find the eigenvalues and eigenfunctions. Our results are
presented in Sect. 4. These consist of plots of the spectral index
as a function of temperature © and half-thickness 7, of the slab,
the angular dependence of the specific intensity of radiation, and
its spatial distribution. We compare these to the formulae for o
presented by Titarchuk & Lyubarskij (1995). Sect. 5 contains
a summary of our conclusions, and a short discussion of their
range of applicability in astrophysical sources.

2. Formulation of the basic equations

Let us first define the geometry of the problem. We consider
an infinite disk of thickness 2z containing a uniform, non-
degenerate gas of free-electrons of temperature 7; and number
density n.. The only process of importance for the transport of
photons in this disk is Compton scattering. The optical half-
thickness of the disk is defined as 79 = orn.zy, where ot =
6.65 x 1072 ¢cm? is the Thomson cross-section. Let the spatial
coordinate normal to the disk be z, with z = 0 on the mid-plane
of the disk, and define the optical depth variable 7 = n.orz
which is bounded by —7p < 7 < 7.

We denote the cosine of the angle between the normal to the
disk and the direction of a photon after scattering by p. In the
same sense, the direction before a scattering event is denoted by
1. Let n be the cosine of the angle between these directions.

U.DJ. Gieseler & J.G. Kirk: An eigenfunction method for the comptonisation problem

For an isotropic electron distribution, the phase function, which
describes the change in photon direction due to scattering, de-
pends only on 7. To calculate this phase function, we have to
perform an integral over the electron velocity. Because of the
isotropy of the electron distribution, the electron direction does
not refer to the disk normal. It is therefore convenient to switch
to a coordinate system, in which the electron direction defines
the z-axis. The cosines of the photon directions with respect to
the electron direction are then denoted by fi (after scattering),
and fi; (before scattering). An analogous notation is used for
the azimuthal angles.

We are interested in a situation in which low frequency ra-
diation is injected into the disk, is scattered by the electrons,
and forms a power-law spectrum at high frequency, as shown by
Shapiro et al. (1976) and Sunyaev & Titarchuk (1980), and seen
in numerical studies of Katz (1976). In the power-law regime,
there is no source of radiation in the disk, and no radiation
which enters from the outside. The time independent, polarisa-
tion averaged, equation of transfer for the specific (up-scattered)
intensity (v, u, ) is then given by

I g I(v, p, 1) = ! /dz/l/dﬂl
or NeOT
0 47

[ 2301 = 2L 11, 7) = 037 = 01 I, 1, 7)
M

(see e.g., Pomraning 1973). This transport equation is a special
case of the linearised Boltzmann equation and we shall simply
refer to it as the Boltzmann equation.

The power-law part of the spectrum we describe occurs at
frequencies lower than that of the Wien cut-off (hv < kgT¢),
so that the energy change of the photon due to the recoil of the
electron, can be neglected in comparison with the Doppler shift
of the photon. In the electron rest frame (in which quantities are
adorned with a prime), the classical Thomson scattering kernel
is then given by

; nior {1+ 'Y} 6/ —v)). )

16w

ol — v, =

The electrons are distributed isotropically. They are described
by a relativistic Maxwell distribution, which is defined as

_ 7’ exp(—7/©)

fw = 4T OKs(1/0)

3

where K5 is the modified Bessel function of the second kind of
order two, and vy = (1 — v?)~'/2 | (here and in the following we
set ¢ = 1). This distribution is normalised according to

/d3v fw) =47r/dvv2 fw)y=1. %)

The scattering kernel in the disk system can be calculated
by performing a Lorentz boost of ¢/, multiplying it by f(v) and
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integrating over v. Then the scattering kernel is given by'

3 neor /d3v f)

O'S(V_)tha@) =

16w vx ~
{0 ) Tl G-
with the definitions
D:=1-jv,
Dy =1-jyv. (6)

We now look for a solution of the Boltzmann equation of the
form

I, p,7)=J(p, )z )

Inserting this, and Eq. (5), into Eq. (1), and performing the triv-
ial integral over v using the 6- function, we find

oJ
p I < )+ BT, ®)
T

where the source function B(yu, 7) is defined as

1 27
1
Bum=, / d / a6 R(p) T(ur, 7). ©)
—1 0

The phase function R(n) is given by

3 Di\at2 1
= [ao ()7 ) et

D (10)

The last three equations (8, 9 and 10), together with the boundary
condition

Jp<0,7=17)=0=Ju>0,7=—1), )

define an integral eigenvalue problem. Our aim is to reduce this
to an algebraic eigenvalue equation by expanding the intensity
J(u, ) into a polynomial series, as mentioned above and shown
in the Sects. A.3 and A.4. We further perform the phase function
integral using an expansion for ® < 1 and © > 1. This is
shown in the Sects. A.1 and A.2.

3. Method of solution

To reduce the integral eigenvalue problem described above to an
algebraic eigenvalue equation, we first expand the phase func-
tion in a series of Legendre polynomials:

M
R(p = wila, ©)Pi(n). (12)

=0

The details of this and the following steps are shown in the
appendix. The coefficients w;(c, ©) can be written, in the case of

See also Titarchuk & Lyubarskij (1995) Eq. (2) after correction of
a minor typographical error.
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small electron temperature (© < 1), as polynomials in «, with
coefficients in terms of moments of the Maxwell distribution,
which can easily be calculated numerically. In the case of high
electron temperature (© > 1), the coefficients w;(a, ©) can be
expressed using the incomplete I'-function.

The essential step is to expand the specific intensity J(u, 7)
into a series of Legendre and Chebyshev polynomials. For the
half-space 0 < p < 1, we write (compare Eq. (A23))

N oon 41

T, = D7,

n=0

Po2pu— D@y (1) 13)

‘We now expand each of these /N +1 expansion coefficients @7, (1)
into a series of Chebyshev polynomials (77;). In vector-form this
reads (compare Eq. (A45))

K
Q' (r/m)=qo+ Y _[1 - Ti(~7/7)] q; .

2=1

(14)

All expansion coefficients can be represented by a common
(K +1)- (N + 1) dimensional vector:

0

91
qg-=1 . 15)

dK
As shown in detail in the appendix, the eigenvalue problem
(Egs. 8-10) becomes with these expansions a set of homoge-
neous linear equations for the vector g, which is very easy to
treat numerically. The set of equations can be written as a matrix
equation (see Eq. (A58)):

F(a,0,7)q =0. (16)

The first step is to calculate the matrix F(a, ©, 7p) for given
values of 7y and ©. The solution for the spectral index « can be
found by solving the following equation for the determinant of
F(a):

det[F(e)] 2 0. (17)

We used Mathematica to find the roots of this equation, which
give the spectral index «. For an expansion of the spatial and
angular dependence of J(u,7) to (e.g.) 9th order, q is a 100
dimensional vector and F(«) is a 100 x 100 matrix. A solution
of Eq. (17) for this dimension takes less than one minute with
a Pentium PC in both the relativistic, and the non-relativistic
cases.

For each value of «, which satisfies Eq. (17), the expansion
coefficients, and therefore J(u, 7), can be found by solving the
equation

Fqg=0, (18)

where F is now a known singular square matrix. This matrix
can be decomposed using a singular value decomposition rou-
tine (see e.g. Press et al. 1986; Wolfram 1991), which yields
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Fig. 1. Spectral index « vs. Thomson optical half thickness 7o,
for non-relativistic and relativistic electron plasma temperatures
O = kgT./me =~ kgT. /(511 keV).

the vector null-space. This vector can immediately inserted into
Eq. (14), which gives Qi(r). Inserting this into Eq. (13), we
end up with the intensity J(u, 7). The resulting values for the
spectral index « and the shape of the intensity in p and 7 are
described in the next section. Use of the singular value decom-
position technique has the advantage that an automatic check
for the presence of repeated roots of Eq. (17) is provided. More
importantly, however, it immediately provides the null-space
and the associated specific intensity of radiation, which must
be physically realistic in the sense that J (x4, 7) must be positive
definite. This important condition enables one to identify the
physically relevant power-law index «, which is the smallest
positive root of the nonlinear Eq. (17).

4. Results
4.1. Spectral index

The spectral index « of the comptonised radiation, for a given
temperature (© < 1 or © > 1), and arbitrary optical depth
2719, can be found by solving Eq. (17).

Note that the spectral index is the exponent of the v-
dependent functions D and D, in the phase function. For non-
relativistic plasma temperatures, the spectral index can be well
above 1. In this case, accuracy is achieved only if the phase
function is expanded to high order in a Taylor series in v — we
use an expansion up to 16th. order (L = 16 in Eq. (AS)). This
sum is represented by an expansion to 10th. order in 7 (M = 10
in Eq. (AS)). In the relativistic temperature regime, on the other
hand, the spectral index « is much lower. Therefore, we take
into account only the leading order of w;(c, ©) in the small
parameter 1/+. The first four coefficients of Eq. (A4) are then
given by the Eqs. (A17), together with Eq. (A20). The spectral
index is not sensitive to the expansion of the 1 and 7 depen-
dence of J(u, 7). It is more than sufficient to choose N = 10 in
Eq. (A23), and K = 10 in Eq. (A45). Results are given for
an electron plasma temperature kg7, = Om, of SkeV and
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Table 1. Spectral index « for two plasma temperatures and differ-
ent expansion parameters M of the source function B(u, 7), and for
Thomson optical half thickness 7o = 0.05, 1.0 and 3.0.

O = ko Te 0 M a
Me
50/511 0.05 0 2.83
50/511 0.05 1 2.80
50/511 0.05 2 2.75
50/511 0.05 3 2.74
50/511 0.05 4 2.74
50/511 1.0 0 0.678
50/511 1.0 1 0.656
50/511 1.0 2 0.652
50/511 1.0 3 0.652
50/511 3.0 0 0.186
50/511 3.0 1 0.179
50/511 3.0 2 0.179
4.0 0.05 0 0.366
4.0 0.05 1 0.361
4.0 0.05 2 0.359
4.0 0.05 3 0.359
4.0 1.0 0 0.0538
4.0 1.0 1 0.0480
4.0 1.0 2 0.0480
4.0 3.0 0 0.0125
4.0 3.0 1 0.0103
4.0 3.0 2 0.0103

50keV in the non-relativistic regime. In the relativistic regime
we choose © = 4.0 and © = 10.0, corresponding roughly to 2
and 5 MeV respectively. Fig. 1 shows the spectral index « ver-
sus the Thomson optical half thickness 7y, using the expansion
parameters given above (L, M, N and K).

These values of « are in good agreement with those given
by Titarchuk & Lyubarskij (1995). These authors assumed an
isotropic source function B(u, 7) (Eq. 9), which is certainly a
good approximation for 79 > 1. To relax this restriction, at
least the first three expansion coefficients of the source func-
tion must be taken into account (M = 0, 1,2), because of the
intrinsic 1+ (1’)> dependence of the Thomson scattering ker-
nel. Especially when the intensity J(u, 7) is highly anisotropic
(which is the case for 7p < 1, as shown in the next section)
the source function B(u,7) depends on the higher expansion
coefficients of the phase function, which leads to an anisotropy
of B(u, 7). In fact for 79 = 0.05 the anisotropy of the source
function at the disk surface for © = 50/511 becomes

B(u=0,m=0.05) _

=23
B(u=1,7=0.05)

19)
The sensitivity of « to the angular expansion of the source func-
tion is, however, not very strong, and it is well approximated by
taking into account the first four Legendre polynomials of the
expansion (M = 3 in Eq. (A5)). This is shown for 7y = 0.05,
1.0 and 3.0, and two different plasma temperatures in Table 1.
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Fig. 2. Angular dependence of the specific intensity J(u, 7) for a Thom-
son optical thickness of 279 = 0.1. The intensity at the surface of the
disk is given by 7 /79 = 1.0. The anisotropy of the integrated intensity
is A(mo) = (J) — J1L)/(J)+J1) = 0.8240.03 for a wide temperature
range. (Expansion up to NV = 16 and K = 10).

Note that even for a value of o = 2.74 it is necessary to choose
a Taylor expansion of sufficiently high order (here: L = 16), for
any value of M.

Titarchuk & Lyubarskij (1995) suggested interpolation for-
mulas (see Eq. (17) and Eq. (21) therein, and also Eq. (27) in
Titarchuk 1994), which are valid for all optical depths and all
plasma temperatures. The values of the spectral index given by
these formulas, differ by less then 1% for 9 > 1 from those
given in Fig. 1; the largest discrepancy is 10% at smaller values
of 7 (see also Table 1).

4.2. Angular distribution

As described at the end of Sect. 3, a singular value decomposi-
tion of the matrix F gives J (i, 7) in the form of a polynomial of
order K in 7 /79, and of order N in p (for any set of parameters
O, 79 and «). We choose L = 16 and M = 6 (see Eq. (AS)) for
the phase function representation, and © = 5/511 for the plots
discussed below. The minimum expansion for the angular and
spatial dependence (K and V) have to be chosen differently for
each optical depth (see figure captions).

Because we are interested especially in non-isotropic inten-
sities, we define a measure of the anisotropy of J(u, 7). First,
let Jj(7) and J (7) be the integrated intensity parallel and per-
pendicular to the disk, over an interval of Ay =0.1:

0.1
5w = [t
0
1
s = [auaun. 0)

0.9
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Fig. 3. Angular dependence of the specific intensity J(u, 7) for a Thom-
son optical thickness of 279 = 0.4. The intensity at the surface of the
disk is given by 7 /70 = 1.0. The anisotropy of the integrated intensity
is A(ro) = (J) — J1L)/(J) +J1) = 0.47 £0.03 for a wide temperature
range. (Expansion up to NV = 12 and K = 14).
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Fig. 4. Angular dependence of the specific intensity J(y, 7) fora Thom-
son optical thickness of 279 = 1.0. The intensity at the surface of the
disk is given by 7 /70 = 1.0. The anisotropy of the integrated intensity
is A(o) = (J) — J10)/(J) +J1) = 0.08 £0.02 for a wide temperature
range. (Expansion up to N = 8 and K = 16).

From this we define an asymmetry? A, which is 0 for isotropic
intensity, and 1 for extremely focussed intensity along the disk
surface:

Alrg) o= J||(10) — J1L(70)

= . 21
Ji(r0) + T (m0) @b

At an optical thickness of order unity (27 =~ 1), this anisotropy
is about zero (see Fig. 4). For smaller values of 7y, A(7y) can
become very close to 1, as shown in Fig. 2, where J(u, 7) is
plotted for an optical depth of 27y = 0.1, normalised to the
intensity in the middle of the disk, parallel to the surface. The
boundary condition gives J(u, 7 = —19) = 0 for 0 < pu <1
(no radiation enters the disk from outside, see dashed line). The
dotted line shows the intensity in the middle of the disk (7 = 0),

2 Inanalogy to the forward-backward asymmetry of the electro-weak

interaction.
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Fig. 5. Spatial distribution of the intensity parallel to the disk (as defined
inEq. (20)), normalised to the parallel intensity at the disk surface. Note
that this plot shows the contributions of the half-space 0 < p < 1.

whereas the solid line shows the intensity at the surface, given by
J(u, T = 19). The normalised specific intensity of the radiation
is approximately independent of the plasma temperature. As
shown by Titarchuk & Lyubarskij (1995) the electron energy
and photon spatial variables are completely decoupled if the
source function is exactly isotropic. However, as discussed in
the preceding section, the source function has a weak angular
dependence, which leads to a coupling of the electron energy and
photon spatial variables. This, in turn, implies that the angular
dependence is a function of the plasma temperature. The range
of variation over the temperature range considered is expressed
in form of an error of the anisotropy. The upper bound of the
anisotropy is valid for © = 5/511, whereas the lower bound
was calculated for © = 100.

Even for a moderately small optical depth of 275 = 0.1 (see
Fig.2) the anisotropy is A(7p) = 0.82 £ 0.03, which means that
the radiation in the interval 0 < p < 0.1 parallel to the disk
surface, is a factor of about 10 more intense than the radiation in
the interval 0.9 < i < 1 perpendicular to the disk. At increased
angular resolution (smaller Ay) this factor is even larger.

The reason for the high anisotropy at small optical depth
is the following: photons which contribute to the power-law
part of the spectrum have to undergo a number of scatterings
on electrons to gain the required energy. The energy gain has
a maximum for back-scattering of the photons (Af = 180°).
Thus, those photons most effectively boosted in energy and least
likely to escape the disk are those which move almost parallel to
the surface. This leads to a strong collimation in the disk plane
for an optically thin disk.

4.3. Spatial distribution

The intensity J(u, 7) provides of course not only the angular
distribution, but also the spatial distribution. The solution dis-
cussed above gives J(u, 7) for the half space 0 < p < 1. A full
angle integrated intensity at any space point is then the sum of
the two half space intensities, which are symmetric with respect
to the middle of the disk. To compare the spatial distribution to
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Fig. 6. Spatial distribution of the intensity perpendicular to the disk
(as defined in Eq. (20)), normalised to the parallel intensity at the disk
surface. Note that this plot shows the contributions of the half-space
0<p<L

the previous figures, we show J(u, 7) also for the half space
0 < p < 1, and used the same set of parameters as in Sect. 4.2.

Fig. 5 shows the intensity J| parallel to the disk, as defined
in Eq. (20) for various optical depths, normalised to the parallel
intensity at the disk surface. At 7 = —7y the intensity has to be
0, because we take into account only the half space 0 < p < 1,
for which the boundary condition is J(u, 7 = —79) = 0. Fig. 6
shows the intensity J, perpendicular to the disk, normalised to
the parallel intensity .J; at the disk surface. Note the difference
in scale between this plot and Fig. 5. A comparison of Fig. 5 and
Fig. 6 provides the anisotropy A(7) for all values of 7. Because
the perpendicular intensity J; drops faster for smaller values
of 7/7y than the parallel intensity .J||, the anisotropy A(T < 7o)
is even larger than A(7p), which is given in the captions of the
Figs. 2 — 4.

5. Discussion

In this paper we have presented a new, semi-analytic method of
obtaining solutions to the comptonisation problem, and used it
to find the power-law index of photons scattered in the Thom-
son regime, neglecting the recoil of the scattered electron. Be-
cause these photons undergo a large number of scatterings be-
fore emerging from the plasma, they have ‘forgotten’ the details
(spatial and angular dependences) of their injection at low fre-
quency. Once in the power-law region, which exists even for
optically thin plasmas, the spatial and angular dependence of
the specific intensity of radiation ceases to be a function of
frequency — it is determined by a particular eigenfunction of
the reduced transfer equation and depends only on the optical
depth and temperature of the plasma. We compute this eigen-
function. This distinguishes our approach from other numerical
techniques in the literature. Haardt (1993), for example, uses
an approximation method in which anisotropy is accounted for
only in the first scattering undergone by a photon, so that his re-
sults are accurate only fairly close to the frequency of injection.
Poutanen & Svensson (1996) have developed a comprehensive
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code based on the iterative scattering method, which treats the
anisotropy ‘exactly’ (on a discrete grid) and accounts for several
processes which we neglect. This method converges rapidly pro-
vided only a few photon scatterings are important, i.e., at small
optical depth and high temperature. However, it would need a
large number of grid points in order to resolve the sharp de-
pendence of the radiation intensity on angle such as displayed
in Fig. 2. In principle, it should be possible to extend our tech-
nique to solve ‘inhomogeneous’ problems, where the emergent
spectrum depends on the input radiation. However, in this case
it would be necessary to compute several eigenfunctions. Fur-
ther extensions of the method to geometries other than slab, or
to arbitrary electron distributions are straightforward.

To apply our results to observations of astrophysical objects
we have to consider the range of spectral indices of order 3 or
less, because higher values are probably too steep to be observ-
able. A spectral index in this range can be achieved by a non-
relativistic plasma with optical thickness of 79 & 1, or by arela-
tivistic plasma with optical thickness of 7y < 1. The assumption
of Thomson scattering (as opposed to Klein-Nishina) restricts
the relevant frequency range to x < 1/(7y) (where (7) is the
averaged Lorentz factor according to Eq. (A6)), i.e. to X-rays
for the highest temperatures considered here. We also require
the dominant source of soft photon input to be at a frequency
which is low enough to require more than a single scattering be-
fore X-ray frequencies are achieved, otherwise the pure power-
law spectrum is not achieved. The average frequency change
on scattering is given by (Az)/x ~ 40 in the non-relativistic
regime, and (Ax)/x ~ (40)? for relativistic temperatures (see
Pozdnyakov et al. 1983).

As an example, consider a plasma with temperature kg7; =
50keV and input photons with energy 5eV. After 20 scatter-
ings, which removes all information of their initial distribution,
they achieve an energy of roughly 4keV. The resulting nor-
malised photon energy is then z = 0.008, which is well below
1/{v) = 0.86. At an optical depth of 275 = 0.4 the intensity
at the disk surface, parallel to it (J)) becomes three times the
intensity perpendicular to the surface (J ), (A(7p) = 0.49, com-
pare Fig. 3). The spectral index for these values of temperature
and optical depth is « = 1.77. For relativistic temperatures,
where spectral indices between 0 and 1 can be produced in a
thin plasma disk (79 < 1), which leads to a very high anisotropy
A(7y), the input photon energy has to be very much lower than
5¢eV, in order to have more than 1 scattering which shifts the
photon energy into the X-ray regime.

In particular, our results concerning the degree of anisotropy
(which is only weakly dependent on temperature) are relevant
to the case of Seyfert galaxies, where plasma temperatures of
the order of 100keV have been suggested (Titarchuk & Mas-
tichiadis 1994; Zdziarski et al. 1995). In these objects, the ratio
of optical to X-ray luminosity should be much smaller for ob-
jects seen ‘edge-on’ than for those seen ‘face-on’ (an effect pre-
dicted by Haardt & Maraschi 1993). It may, however, be difficult
to disentangle this effect from that of the increased absorption
of optical radiation expected in edge-on sources.
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Quite apart from application to astrophysically important
objects, the results of our computations should be helpful as
a check on other numerical methods of solution, in particular
Monte-Carlo simulations. Here it is worth mentioning that we
have used a polarisation averaged treatment of the transport. All
current Monte-Carlo codes also use this same approximation,
so that the results they obtain are directly comparable to ours.
Generalisation to polarisation dependent transfer is in principle
possible.

Acknowledgements. We would like to thank A. Mastichiadis for useful
discussions and L. Titarchuk for a thorough reading of the manuscript
and several suggested improvements.

Appendix A: reduction of the Boltzmann equation to an al-
gebraic eigenvalue equation

To express the Boltzmann equation in the form of an algebraic
eigenvalue equation, we express the angular and spatial depen-
dence of the source function R(7) and the specific intensity
J(p, T) in terms of Legendre and Chebyshev polynomials.

Let us first write the source function as a series

M
R =Y wile, ®)Pi(),

=0

(AD)

where the angular dependence of R(7n) is expressed in form of
Legendre polynomials, with the normalisation:

! 0ij - (A2)

1
2
/ (W P(udp =,
~1
These polynomials obey an addition theorem (see e.g., Landau
& Lifschitz 1988 Eq. (c.10)):

P(n) = Pi(u)Py(p) A3
L
+ Z 2((1 . :Z)), P ()P () cos(m(o — ¢1)),

m=1

where ¢, u = cosf and ¢, 1 = cos 6y define two directions
with 7 = arccos 7) the angle between these directions. Eq. (A1)
can then be written:

1 M
o /R(n)d¢= ;wi(a,@)Pi(M)Pi(m) = K(p, ). (A4)

To calculate the coefficients w;(a, ©) for given values of
the temperature ©, we have to perform the integral over the
electron velocity v, which is tractable in the limit of high or low
electron plasma temperature. In these limits we can expand the
integrand into a series in v, as described in Sect. A.1 for the
non-relativistic case, and in 1/, as described in Sect. A.2 for
the relativistic case.

The expansion of the angular and spatial dependence of
J(p, 7) due to Legendre and Chebyshev polynomials is de-
scribed in Sects. A.3 and A 4.
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A.l. Expansion of the phase function in the limit © < 1

For small plasma temperatures the main contribution to the in-
tegral over electron velocity arises from the region of small
velocities. Therefore, the integrand (more precisely the factor
multiplying f(v)) can be expanded into a Taylor series at v = 0
with expansion coefficients a;:

3 (5 1 (1— o)t
 EECR

_ 2
'{1 * (1 T2 f,;w)(?fﬂ]v)) }

L
/vzdv dfir dde f(0) D asle, flf, de, m)s fir, M) v'

=0

R(n)

M
= > wila, ©)P(). (A5)

=0

We choose the direction of the outgoing photon as z-axis. The
cosine of the polar angle of the electron is then [i; and the
azimuth of the electron direction is denoted by @.. With this
choice of coordinate system, the integration over electron direc-
tion (dfi; dg) becomes trivial. The remaining electron velocity
integral can be expressed in the form of moments, which can
easily be calculated numerically:

1
(V) = 4n / fwywk*2dv. (A6)
0

The normalisation of f(v) gives (v°) = 1, and (v?) = 3O for
non-relativistic electron plasma temperatures. We used Mathe-
matica (see e.g. Wolfram 1991) to expand the integrand of R(7)
up to 16th. order in v. Therefore (v*) has to be calculated for
k=0,2,4,...,16. The odd moments vanish due to the angular
integration. This expansion in v results in a polynomial series
of order M = L/2 + 2 in 7. (Note, however, that one may still
choose to truncate at M < L/2+2). As an example we give the
expansion up to 4th. order in v. The coefficients are then given
by:

2
wola,©) = 1+ <”3> (@2 +3a)

L0

150 (@ +3a)(7a* +21a +22),

wi(@,8) = = (¥ (@*+3a+1)

o)

25
1
QJQ(O[, 9) =

—~ W N

Qa* + 120 + 2162 +9a + 6),

2

2+ <U6> (@* +3a — 6)
(v*)
210
(v?)
10

(10a* + 600 + 550% — 1050 +78),

wi(a,©) = — (aa—D(a+4)
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4
- <15]o> (@ — D@+ +3a—7),
(v*)

wy(a, ©) = 175

(a—D(a—2)a+4d)(a+)5). (A7)
For very small electron temperatures and sufficiently small val-
ues of a, the sum of Eq. (A5) converges very quickly. If we
truncate it at (e.g.) L = 2, the coefficient of the isotropic part of
Eq. (Ad)is

wola, ©) =1+ 0O (a? +3a), (A8)

in agreement with Eq. (18) of Titarchuk & Lyubarskij (1995)°.

A.2. Expansion of the phase function in the limit © > 1

In the relativistic limit, the expansion has to be done in a slightly
different way, because the phase function contains singular parts
at v = 1. Using the orthogonality of the Legendre polynomials,
the coefficients of Eq. (A1) can be written:

2i+1

wi(a, ©) = 4

/ R(n)P;(m) d$2, (A9)

where d{) = dn d¢ with ¢ the azimuth of the incoming photon
with respect to the outgoing one, which defines the z-axis. In
this reference frame, the electron volume-element can be written
v = v2dv df.. Using this relation, and the definition of the
phase function, the expansion coefficients can be written as

1
wila, ©) :377/dv1)2 f;’) Si(e, ), (A10)
0
with the temperature independent kernel
i) = 2i+1/ DI\ 1
A=y | \ D D
A1+ @)} Pi(n) dQdQ. . (A11)

The axis of integration in this reference frame can be changed, so
that the electron direction becomes the z-axis. This is expressed
by dQdQ. = dQdQ,. With this choice of coordinates, it is
easy to perform a Lorentz boost to the electron rest frame. The
azimuths of the in- and outgoing photons do not change, and
the angle between the photon direction and the boost direction
changes according to

. 4w

= . Al2
fr= L oit (A12)
The differential solid angle transforms as

~ dsy
dQ) = (A13)

V(L + o)

2
* Eq. (A.16) should read: Cp = ;2 {1+ ”3 [ +3)+6] } .
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These transformations lead to
21+ 1 ~ o~

di’ dii} dp do
(47_‘_)2,}/2/ oAy ¢ d)l
(1 +vf")”

(1 + i)

dji(av 7) =

{1+@?} Pp,  (Al4)
where the argument of the Legendre polynomials has to be in-
serted as

1 1—7

7 (L+ o)1+ it}
To solve the above integrals one might use integral tables, or
computer programs. We used Mathematica to find analytic so-
lutions for 7 = 0,1,2,3 (see Titarchuk & Lyubarskij 1995,
Egs. (A10)-(A15), for ¢+ = 0). In the limit v — 1 these solu-
tions diverge. Therefore we separated the leading order terms.
Extracting a y-dependent factor according to:

n=1 (A15)

Gi(e, ) = (297 @), (A16)
these solutions are:
D@ = o 4 ?)((624:32))% +3) (A7)
Bi(a) = — ala+3)+4 ’

(a+2)*(a + 3)?
Br(a) = 5 a(a+3)+4

Y @+22a+32(a+4)’

a(a+3)+4
(a+22(a+3)(a+d)(a+5)’
Again, the isotropic part, &p(a,y), is in agreement with
Eq. (A17) of Titarchuk & Lyubarskij (1995).
For high plasma temperatures one can expand the integrand of
Eq. (A10) into a series. Using the following relation:

w3(a) = Ta(l — a)

1 1 1 1

2dv = 1— dy= (- od Al
v*dv w3\/ 23 73( 2t )dy (A18)
Eq. (A10) becomes:

3 1 .
wi(@,©) =, OKs(1/60) @i()

r 1 20042 7

/dv(l 272)(27) xp(— ). (AL9)

1

The above integration can be expressed in terms of the incom-
plete I'-function*. Then the coefficients w;(cv, ©) can be written:

20 pret
e i)

wi(a, ®) = 3K2(1/®) @;

N 1
|0 (2a+3, ) = Ta+1, )] (A20)

Together with Egs. (A17) this defines the expansion coefficients
(for ¢ = 0,1,2,3) of the phase function for a high electron
plasma temperature.

Y T(za) = [T e dt
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A.3. The angular dependence of J (i, T)

The angular dependence of the intensity J(u,7) can be ex-
pressed in the form of a series of Legendre polynomials with 7-
dependent coefficients. Because of the symmetry of the bound-
ary conditions, it is necessary only to calculate J(u, 7) for one
half-space: 0 < p < 1 and —79 < 7 < 7. The intensity in the
second half-space is then given by

J(=p, ) =J(p, —7).

Having in mind the orthogonality relation for Legendre poly-
nomials on the interval (e.g.) 0 < < 1:

(A21)

Onk » (A22)

1
1
P,2u— D)Py(2u — Ddu =
/(u VP — Ddp il
0

we expand the intensity as follows

N 2n+1
T n],0 =D,

n=0

N

2n+1
> men-0Qim.

Pop+1Q, (1),

T 1) 50 = (A23)

n=0

Defining the new variables ¢ and (, according to:

¢
€ =

the inversion of Eq. (A23) can be written as

2u+1|u<0,

20 =1, (A24)

1

Qun = [3(4 Lnpaoc,

21
1
ao = [a(55]

—1

;) Pr(€)d€ . (A25)

Noting that P, (u) = (—1)"P,(—pu), the symmetry condition
(Eq. A21) gives

Q, (M) =(=D"QL(-7).

Itis useful to rewrite the kernel K (p, 1t1) using a transformation
of variables and to split it into two parts according to p; < 0
and p; > 0. This is done in the following way: written in the
form of a scalar product, the right-hand side of Eq. (A4) reads:

K, p1) = P(p) w(a, ©) P(u)

with a diagonal, M + 1-dimensional matrix w(«, ©) and vec-
tors P. Let W be the matrix, which transforms the Legendre
polynomial as’

(A26)

(A27)

PQ2ui —1)=W P(uy).

5

(A28)

The matrix W can be calculated from Eq. (A28) by expressing the
vectors P(u1) and P(2u; — 1) in the common basis (1, u, u27 e uM)
and inverting the matrix of coefficients of P(u,).
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Then, for p; > 0, one can write:

w(a,©) P(uy) = w(a, ©)W™'W P(uy)

= w'(a, ) PQui — 1), (A29)

with an M + 1-dimensional, non-diagonal, matrix w*(«, ©). An
analogous transformation in the range p; < 0 leads to

K m) = P(n) | w*(@,0) PQpuy — D Hn)

+w (0, 0) PQuy + DH(—m) |, (A30)
with the Heaviside function:
_J 1 =0
H(uy) = { 0 1w <0 (A31)

The source function B(u, 7) (Eq. 9) becomes with this (and the
use of Eq. (A25), and suppressing the dependence of w™ on a
and ©):

B(p, 1) = (A32)

1
A [P(ww' Q' (1) + P(ww™ Q™ (7)].

Inserting this into the Boltzmann equation (Eq. 8), substituting
& =2p — 1for p > 0, multiplying by Py(), and integrating &
from -1 to 1, we obtain

1
0 E+1 E+1 :
8T/d§ s DI, ) =

N

> / ae PuoP(* 31 [0 @1+ Q)
7,7=0"
1
/dka(f)J(§+1 7). (A33)

—1

The indices i, j, k run from 0 to N. If N > M the matrices
w;; and w;; can be defined with all elements equal to 0 for
1,7 > M.If N < M only the elements with ¢, j < IV are taken
into account, so that in both cases the matrices formally become
N + 1-dimensional. Using the recurrence relation for Legendre
polynomials,

k+1

§ P& = okt 1

P19 + P (©), (A34)

k
2k+1
the left hand side of Eq. (A33) can be written in terms of a
tridiagonal matrix, whose elements are defined as:

Ly = Zkk-:i- { Ok 141 + gt + 2]2-:_11 Oki—1 - (A35)
We further define a matrix with the elements:

1
Sui=y [aen©n(t)). (A36)

—1
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Using these definitions, and again Eq. (A25), Eq. (A33) be-
comes

N

52,90 -3 S

=0 ,5=0

—2Qk(m).

Having in mind the symmetry relation, Eq. (A26), and defining
a diagonal matrix according to

[wi; QM) +w;; Q5 (7]

(A37)

Ejm = (_l)j 6jm ) (A38)
Eq. (A37) reads in matrix form
8
%T(T) S[w' Q' (M) +w EQ'(-7)]
—2Q7(7). (A39)

This can be expressed in somewhat shorter way, using the defi-
nitions

M:= -21+Suw",
M := Sw E. (A40)
Now the Boltzmann equation can be written as
+
270 S Mm@, (A41)
T

and represents a system of IV + 1 coupled differential equations.

For a given temperature in the non-relativistic regime
(© < 1), the moments (v*) are to be calculated up to k = L.
The matrix elements of M and M are then polynomials in « of
maximal order L.

In case of high plasma temperature (© > 1), the matrix
elements of M and M depend on the incomplete I'-function (see
Eq. (A20)).

A.4. The spatial dependence of J(, T)

Eq. (A41) is a system of coupled differential equations for the
N + 1 expansion coefficients of J(u, 7), which contain the 7-
dependence of the intensity. In expanding these coefficients
themselves into a series, the problem is reduced to an algebraic
eigenvalue problem. A difference arises compared to the above
treatment of the angular dependence in that we have to take into
account the boundary condition, which is that no radiation enter
the disk from outside:

T 70)] g = 0 = TGt —10)] - (A42)
We introduce at this point a new variable according to
T
y(7) = (A43)
70

Using this transformation and Eq. (A23), the boundary condi-
tion reads for all expansion coefficients:

Q'(-D=0=Q (1. (A44)



U.DJ. Gieseler & J.G. Kirk: An eigenfunction method for the comptonisation problem

We chose an expansion of Q* in Chebyshev polynomials ac-
cording to

K
QW =g+ Y [1-Ti(—y]a (A45)

i=1

with Q™ (y) given by the symmetry condition Eq. (A26). The
boundary condition then gives gy = 0. Inserting this into
Eq. (A41) one gets

K

1 oT; X , 8
Z( 1)1+l (y)qu ZTz(y) [(_I)HIM _ M] q

-
050

(A46)

+§:[M+I\7I]q

Multiplying this equation by T (y)/ \/ 1 — y? and integrating ¥
from —1 to 1, it becomes

Z( 1)z+1

—1

J (y) dy T; (y)

V-

T (y) T; (y) [

q:

( 1)Z+1 M M]

(A47)

This is a vector equation with K x K matrices, defined by the in-
tegrals over Chebyshev polynomials. We denote these matrices
by

1
Ti(w) 2 Ti(y)
T i1 = d Y 9
( d)j \/1 y \/1 _y2
1
T(y)T(y)
(To) i = d
’ V1—12
1
T;(y)
(Tw)ji = [ dy
" VIR
(Eix = (—1)“‘ Sik - (A48)

The matrix elements are straightforwardly calculated using the
orthogonality relation for Chebyshev polynomials:

0 : i#j
T;(T;
ay Y (y) ={n/2 ¢ i=j#0 (A49)
\/1 i ’L = ] = O y
the expression for the derivative:
dTi(y) _ —iyTi(y) +iTi-1(y) (A50)

dy (1 -y ’
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and the recurrence relation

Tin(y) =2y Ti(y) — T;1(y) .

The boundary condition gy = 0 is not explicitly included
in the above matrix equation, but must be inserted ‘by hand’
into Eq. (A47) This is done by extending the matrix equation

(AS1)

toi,j = , K, and adding the equations
§:<ziq¢:o (A52)
i=0
with
1 j=K and ¢=0
©);: = {0 otherwise (AS3)

All other matrices have to be set to 0 for 7 = K. The matrices
are then given by

To)i = X t>7 and ¢+7j= odd
dit =0 otherwise
0 : i#¢j or j=K
(To)ji = < m/2 i=j#0 and j#K
™ : t1=5=0 ,
T 7=0
(Twji = {0 otherwise (A54)

It is useful to write Eq. (A47) in a different way. It is a vector
equation in which the elements are themselves vectors, multi-
plied by matrices. This form of matrix multiplication is just the
outer product of matrices, denoted by ®. The K + 1 vectors
of dimension N + 1 can be written as a common vector in a
(K + 1) - (IV + 1)-dimensional product-space:

90
q;
q:=1 . (AS5)
dx
Note that the vector g does not have an index but includes all
expansion coefficients of the angular and spatial dependence of
J(u, 7). Eq. (A47) now reads

[:O(EtTd)@@Z]q = [Cel+Ty®M+M)

+ETH)OM - T,@M]q.  (A56)

Let us denote the matrix on the left hand side, which does not
depend on any parameter, by

A=ETy®Z, (A7)

and the right hand matrix, which depends on « and © (due to
w*(a, ©) in M and M) by D(c, ©). Eq. (A56) reads with these
definitions:
1
[TA—D(a,(a)]qz F(a,0,70)q =0. (A58)
0

This defines an algebraic eigenvalue problem for all of the ex-
pansion coefficients q.



270 U.DJ. Gieseler & J.G. Kirk: An eigenfunction method for the comptonisation problem

References

Cooper G., 1971, Phys. Rev. D 3, 2312

Ebisawa K., Titarchuk L., Chakrabarti S.K., 1996, Publ. Astron. Soc.
Japan 48, 59

Haardt F., 1993, ApJ 413, 680

Haardt F., Maraschi L., 1993, ApJ 413, 507

Haardt F., Maraschi L., Ghisellini G., 1994, ApJ 432, .95

Hua X.-M., Titarchuk L.G., 1995, ApJ 449, 188

Katz J.I., 1976, ApJ 206, 910

Landau L.D., Lifschitz E.M., 1988, Quantenmechanik, Akademie-
Verlag, Berlin

Pomraning G.C., 1973, Radiation Hydrodynamics, Pergamon Press,
Oxford

Poutanen J., Svensson R., 1996, ApJ 470, 249

Pozdnyakov L.A., Sobol .M., Sunyaev R.A., 1983, Ap. Space Phys.
Rev. 2, 189

Prasad M.K., Shestakov A.I., Kershaw D.S., Zimmerman G.B., 1988,
J. Quant. Spectrosc. Rad. Transf. 40, 29

Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., 1986, Nu-
merical Recipes, Cambridge University Press

Shapiro S.L., Lightman A.P., Eardley D.M., 1976, ApJ 204, 187

Stern B.E., Begelman M.C., Sikora M., Svensson R., 1995a, MNRAS
272,291

Stern B.E., Poutanen J., Svensson R., Sikora M., Begelman M.C.,
1995b, ApJ 449, L13

Sunyaev R.A., Titarchuk L.G., 1980, A&A 86, 121

Sunyaev R.A., Titarchuk L.G., 1985, A&A 143, 374

Sunyaev R.A., Triimper J., 1979, Nature 279, 506

Titarchuk L.G., 1994, ApJ 434, 570

Titarchuk L.G., Lyubarskij Y., 1995, ApJ 450, 876

Titarchuk L.G., Mastichiadis A., 1994, ApJ 433, L33

Wolfram S., 1991, Mathematica, Addison-Wesley, New-York

Zdziarski A.A., 1986, ApJ 303, 94

Zdziarski A.A., Johnson W.N., Done C., Smith D., McNaron-Brown
K., 1995, ApJ 438, L63

This article was processed by the author using Springer-Verlag IATX
A&A style file L-AA version 3.



