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Abstract. One of the key questions to understanding the effi- Introduction
ciency of diffusive shock acceleration of the cosmic rays (CRﬂ] o . .
. L . . e non-thermal energy distributions of cosmic ray ions or
is the injection process from thermal particles. A self-consistent

injection model based on the interactions of the suprather Qurce distributions of electrons emitting synchrotron radiation

particles with self-generated magneto-hydrodynamic waves fagarious astrophysical objects are commonly described as pro-
f;
)

been developed recently by Malkdv (1998). By adopting th uced by the first order Fermi acceleration process at shocks

) , ) . oaT i
analytic solution, a numerical treatment of the plasma-physi (f;lrelvgl)z\f\l/)s see Drur/ 1983; Blandford & Eichler 1987; Kirk

injection model at a strong quasi-parallel shock has been de- . . . .
vised and incorporated into the combined gas dynamics and When particles diffuskoff the moving scattering centers

the CR diffusion-convection code. In order to investigate self! @ region divided by a velocity discontinuity (shock), these

consistently the injection and acceleration efficiencies, we haR/%rt'CIeS can be accelerated if their mean free paths exceed the

applied this code to the CR modified shocks of both high a;ﬁHOCk thlgknessf. J}he LelaEv_e tmhomentum tgalnlf;)r S]cyclle of
low Mach numbers { — 30 and M — 2.24) with a Bohm Wo crossings of the shock is then proportional to the veloc-

type diffusion model. Both simulations have been carried OLI%( tggfi;]%r:ievzggfs (tgguslhgfg)’ Illr?.a(;{rgrs:\ C)sriiglr xltl?sirc?rflg:t
until the maximum momenturtpmax/mpc) ~ 1is achieved to y e phy

illustrate early evolution of a Bohm type diffusion. We find thglasmas an electro-magnetic field must be present to change the

injection process is self-regulated in such a way that the injeeCr]ergy of particles. Waves or irregularities in this field provide

. Y ticle scattering, which leads to diffusion. Consider a shock
tion rate reaches and stays at a nearly stable value after q v!?l!ﬁ velocit 2 0 propagating into a plasma at rest with
initial adjustment. For both shocks abdt3 of the incoming Y s propagating P

thermal particles are injected into the CRs. For the weak shogEnS'typ and with a homogeneous magnetic figlgin the di-

the shock has reached a steady state within our integration tif e%r:gtn of tg € ;Zogtlg:;m;:.cj-l;ro?/vzladstxvi;rggmpv:/(iatshster?et(\)/et?e
and~ 10% of the total available shock energy is transferedinﬁoCit ypd_ y (1-1/r) ‘Wherer — /pis the compression
the CR energy density. The strong shock has achieved a higRety “d = Us{t =~ 1/T), "= pasp P

s . . .
acceleration efficiency of 20% by the end of our simulation, I:a?:]%o?i:tolgsea\gl;nézi fT oerﬁr;gv?/\évgtfg:;r?ovjlos?ga; lé)decause
but has not yet reached a steady-state. With such efficiencies . upstream,

< us. In addition the shock may not be a discontinuity for a

shocks do not become CR-dominated or smoothed complet / rticle at this energy, because the gyro radius of the thermal par-

during the early stages when the patrticles are only mildly refd . . . . .
tivistic. Later, as the CR pressure becomes dominated by higH les is of the order of the shock thickness, leading to adiabatic

relativistic particles that situation should change, but is difficuit < &Y change while crossing the shock. Because the plasma
IS also heated downstream of the shock, some supra-thermal

to compute, since the maximum CR momentum increases BRrticles in the high energy tail of the Maxwellian velocity dis-
proximately linearly with time for this model. In the near futun%’. 9 9y Y

we intend to extend such shock simulations as these to inCI%g%ﬁlgrg;nsi{ngaslr?oirlle:ﬂlZshi?r?ogaevrnee\éilg(r;:[:gsntt?é ggfgv é?g?o

much higher CR momenta using an adaptive mesh refinean ; .
: ack of scattering centers these particles would escape upstream
technique currently under development.

without returning to the shock. Then, the acceleration mecha-
Key words: acceleration of particles — hydrodynamics — shoc:;ﬂ(::':nn\?g/uelduncs)iraegﬂy' ':c?\\/'ivde‘\:zr’stzg dpozlrjtli?:tlfgg;?nar\t/i/cr:i:shthztn-
waves — methods: numerical — ISM: cosmic rays up P : P : ' 9
erates Alfien waves responsible for scattering and, therefore,
diffusion, which is an essential element of the first order Fermi

acceleration process.
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The problem of particle acceleration from thermal energighase-space function and therefore determine these parameters.
up to relativistic particle energies is highly non-linear, as firéh this way we can incorporate self-consistent plasma physical
pointed out by Eichlef (1979). First, the energy transferred fromodels into numerical simulations of CR acceleration.
the bulk of the plasma to the sub-population of accelerated par- Such a plasma physical model based on non-linear interac-
ticles can change the thermodynamic properties of the plastioas of particles with self-generated waves in a shocked plasma
like the temperature and density. In addition, the acceleratests been investigated numerically by solving the kinetic equa-
particles provide their own pressure in the system, which, sinbens of ions in a magnetic field, and treating the electrons as
it differs from the thermal pressure, modifies the velocity strue-background fluid (Quest'1988). These simulations show that
ture of the shock transition. Second, the waves generatedidnys can be scattered back and forth across the shock by self-
particles escaping upstream determine the transport propergjeserated waves, and Quest (1988) also points out that these
of the plasma, and, therefore, regulate this wave generating®sattered ions can provide a seed population of cosmic rays.
cape itself. The manner in which the wave-particle interactions Recently, the kinetic equations of ions were solved analyt-
control the fraction of plasma particles that can escape upstreagily for non-linear wave-fields near strong parallel shocks by
to participate in the Fermi process is commonly caifigelction  Malkov & V 6lk (1995) and Malkov (1998). These authors were
This is a basic aspect of the plasma of collisionless shocks andlite to constrain the fraction of phase-space of the background
itself highly non-linear. This injection problem is fundamentallplasma that can be injected into the acceleration process as a re-
related to the question of the efficiency of particle acceleratisult of the self-regulating interaction between wave generation
at shocks by the Fermi process. and particle streaming. Here we incorporate this self-consistent

Different numerical methods have been used to treat the aralytical result in numerical solutions of the hydro-dynamical
jection problem of CR modified shocks. In Monte-Carlo simwequations together with the cosmic-ray transport equation. Our
lations of non-linear particle acceleration the details of a positeinulations, therefore, provide the first time dependent solution
scattering law provide an injection parameter, but one not d#-the problem of modified shocks that includes a self-consistent
termined self-consistently from the particle wave interactigrlasma physical injection model. This technique enables us to
(e.g. Ellison et al. 1996; Baring et al. 1999). In contrast to pudetermine the level of shock modification and acceleration ef-
kinematical effects from shock velocity, particle speed and ifieiency in an evolving shock without a free parameter for the
clination angle of magnetic field and shock, the waves respanjection process (Gieseler et/al. 1999).
sible for particle scattering depend on plasma properties like We describe the plasma physical injection model in some
temperature and the beam strength of the wave generating paore detail in Sedil2 before we outline the coupled set of dy-
ticles itself. These coupled and time dependent effects are natnical equations of the plasma and cosmic rays in Sect. 3,
easy to incorporate into a Monte-Carlo approach. Time depéogether with details of the numerical method we used to solve
dent Monte-Carlo simulations have been presented by Knertletse equations. The results are presented in[$ect. 4 andl Sect. 5,
al. (1996), but still with a prescribed scattering law, as a paraconsisting of the time dependent evolution of the plasma prop-
eterization of injection. erties, showing especially the modification of the velocity pro-

In the two-fluid approach the cosmic rays are treated adile and the momentum distributions of thermal and relativistic
diffusive gas without following their momentum distributioncosmic-ray particles. In addition we present our results in the
The energy transfer into CRs in these models is based ofoan of a particle injection efficiency and an energy transfer
fraction of the upstream gas particles, that are instantaneoueffjciency at modified strong shocks.
accelerated atthe shock (Darfi 1990), around the shock (Jones &

Kang 1990) or at velocity gradients (Zank et al. 1993). In prag- Injection model
tical terms, because the shock is the most prominent velocity . .
gradient in the system, these techniques are very closely relafed;; Wave-particle interaction at parallel shocks

as pointed out by Kang & Jonels (1995). Essentially the samgsupernova remnants (SNRs) the relative orientation of mag-
parameterization is also used in the numerical solution of thetic field and shock front can be very diverse, even in one
hydro-dynamical equations coupled to the momentum depejhgle object. For example, if a spherically symmetric shock
dent cosmic-ray transport equation (e.g. Falle & Giddings 19&¥nt expands in a region of homogeneous magnetic field, the
Kang & Jones 1991; Berezhko etlal. 1994). directions of the shock normal and the magnetic field change
Kang & Jones (1995) used a numerical injection model withyer the shock surface from parallel to perpendicular. For nearly
two essentially free parameters which describe boundariespérpendicular shocks the acceleration process can be very fast
momentum at which particles can be acceleraged=(c1 - p.. and effective due to reflections upstream of the shock (Naito &
wherep,, is the peak momentum of the Maxwell distribution)rakahara 1995). However, the velocity of the intersection point
and from which these contribute to the cosmic-ray presswEshock and magnetic field in highly oblique shocks can be
(p2 = c2 - p.). Still, these momentum boundaries are free pgtose to light velocity. This can suppress the injection efficiency
rameters, which can be translated into a particle fraction of thethermal particles, which are effectively tied to magnetic field
upstream gas. However, models that incorporate more detail§igés. That is because the velocity distribution function of ther-
the plasma physics of the background plasma, and, therefore #2# protons, which we shall assume to be Maxwellian, drops
CRs at injection energies are really necessary to constrain §h@rply towards high energies. This purely kinematical effect
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Yo, 2.2. Thermal leakage model

Ust I The particles with a large enough gyro radius
rg. =pcsina/(eB.) > 1/ky 2

can have an effective velocity with respect to the wave frame,

i.e. the downstream plasma would be transparent. Some of these
particles that are in the appropriate part of the phase space (de-
pending on the shock speed) would be able to cross the shock

U N g from downstream to upstream. For the protons of the plasma, the
0 resonance condition for the cyclotron generation of the &ifv
YRVEVERY U%U = X waves givesk(v) ~ wy = w, By/B,, where the cyclotron
T‘.am" frequency of protons is given by, = eB, /(mc), and(v) is

the mean downstream thermal velocity of the protons. We now
upstream have for the thermal protorigr,, ~ ¢ < 1. This means that

most of the downstream thermal protons would be confined by
Fig. 1. Cartoon of the injection model in the shock-frame phase-spatB€ Wave, and only particles with higher velocity in the tail of
Plasma is moving towardsz into the shock with velocity-u, and the Maxwellian distribution are able to leak through the shock.
gets compressed, heated and decelerated to the downstream veldfig With mass-to-charge ratio higher than protons have a pro-
—uz. Particles with positive velocity can stream back to upstream alopgrtionally larger gyro radius, so that the injection efficiency of
the magnetic field3,. These particles provide the beam, which gerprotons would yield a lower limit for the less magnetized ions.
erates the magnetic field waves. The magnetic field wave is sho@p the other hand, for thermal electrons a plasma with such
schematic_ally in conf_iguration space. The wave amplitude, frequenﬁyoton generated waves would have a reduced transparency due
and damping length is shown only qualitatively. to the smaller gyro radius of the electrons. However, reflection
of electrons (and protons) off the shock could become efficient

has been investigated by Baring et &l (1993). Therefore, Y¥ih increasing wave amplitude and possibly aid in their in-
gions of SNRs where quasi-parallel shocks exist, are likely fgftion (e-g. Levinson 1996; McClements etlal. 1997). In the
be where the most effective injection occurs. On the other haffgflowing we will focus on the protons, which carry most of the
effective acceleration, i.e. short acceleration time scales &gy and momentum of the plasma.
hard spectra, may be realized in other parts of a SNR, where an
oblique geometry of magnetic field and shock normal is foung.3. Transparency function

For quasi-parallel shocks, where the shock propagates along

the mean magnetic field:{direction), the transport propertiesTO find the part of the thermal distribution for which the mag-

along the mean field direction are most important. We will a§€tized plasma is transparent, and, which, therefore, forms the
sume this case, with the fielf, parallel to the shock nor- “injection pool”, Malkov (I998) solves analytically the equa-

mal. The spatial diffusion of particles is produced by magnetoNS Of motion for protons in self-generated waves. He finds a
hydrodynamic waves, which are in turn generated by péfansparency function,,., which expresses the fraction of par-
ticles streaming along the magnetic fielB,. We refer to ticles that are able to leak through the magnetic waves, divided
Malkov (1998) for an extended analytical description of th@ the part of the phase space for which particles would be
particle-wave interaction for low-momentum particles, and wP!€ t0 cross from downstream to upstream when no waves are
describe here only the results which are relevant for the imghtesent. For the adiabatic wave particle interaction the trans-
cation of this model in our simulations of the time dependeRgrency function is given by Malkov (1998) Eg.(33), with
acceleration at modified shocks. When particles are streaming = 2 Ves/ (1 — u2/v), wherev is the particle velocity and
along the magnetic field in the upstream direction, waves dfe = s/7 1S the velocity of the shockin the downstream plasma

generated due to the ion cyclotron instability. The resulting uff@me- Herev... is the fraction of the particles streaming back
stream magnetic field, which corresponds to a circularly polaf®™ downstregm to upstream. This quantity is divided by th_e
ized wave. can be written as fraction of particles that would be able to escape upstream in

the absence of waves. In order not to further increase the com-
B = Bye, + B, (e, coskox — e sinkyx). (1) plexity of our numerical simulation, we use here the following

] ] N approximation of the representation given in Malkov (1998):
The amplitudeB, will be amplified downstream of the shocks

by a factorr = pa/p. The downstream field can be described (v u,) = H[5— (1 + €)] (1 7 @)—1 <1 B 1)
by a parametet, for which, following Malkov, we assume v

e := By/B, < 1, in the case of strong shocks. Note that .exp{_ o (1 +6)]72} ’ 3)
the perpendicular component of the magnetic field leads ef-

fectively to an alternating field downstream of the shock favhere the particle velocity is normalizedic= vkq/w, andH
particles moving along the shock normal (see Hig. 1). is the Heaviside step function. We argued above thatkq ~

downstream

shock

v
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Fig. 2. Transparency function Ed(3) vs. the normalized particle veloEig. 3. Transparency function Eq(3) vs. the normalized particle ve-
ity o = vko/w, for e = 0.35 (solid line). Shown as a dashed line idocity & = wv/u2 for different values ofe. We used the relation
the transparency function given in Fig. 2 of Malkov &W (1998). wi /ko ~ uz/e (see text).

us /e (see MalkoV 1998, Eq. 42). The transparency function ndigpendence and also the asymptotic behavior is mode]ed_rea—

solely depends on the shock velocity in the downstream fignably well by the representation Hg. (3). In the normalization

frame,u., the particle velocityy, and the relative amplitude of ©f Fi9-12, the dependence ens very weak, and, therefore, not

the waver. shown. To illustrate the dependence of the transparency func-
The calculation of the transparency function and the wa#en on small variations of the field amplitude, it is better to

amplitudee uses the ergodicity of the downstream phase-spdddP0se a different normalization. Therefore, the transparency

for the randomized motion of particles in the high-amplitug@nction Eq.[3) is shown in Figl3 vs. the velocity normalized

wave field. The upstream wave field is generated by a befff = v/uz for the maximal allowed range in as described

of leaking particles whose energy density is calculated fro?OVe:

the corresponding area of the downstream phase-space. From

the energy density of this beam the upstream magnetic-fiddModel

wave amplitude is determined self-consistently (Malkov 1$D8). ) )

Because of this feedback Malkov was able to constrain tﬁel Dynamical equations

quantitye as0.3 < e S 0.4, leaving essentially no free pa-The standard hydro-dynamical equations of mass, momentum

rameter. Comparison with hybrid plasma simulations suggesisd energy conservation for a gas with Veloaij;@m’t), and

025 < e S 0.35 (Malkov & Volk 199€), consistent with densityp(z, ), corrected for CR pressure effects are given by
their analytical results. This constraint on the wave-amplitude

B, /By = 1/e defines the level to which the particle-wave in- a0 _ _p@7 (4)
teraction adjusts. With the estimation of this amplitude there dt Ox

is no free parameter describing the level of the beam strengyﬁlﬁ — _ﬂ(pg +P), (5)
for the injection, and, therefore, the injection efficiency. The d? Oz

advantage of our approach presented here is that quanti 68 _ _ 9 [u(P, + P.)] + P, Ou _ S(z,t) (6)
like the plasma velocity and particle momentum distribution d¢ Ox s ¢ “Ox T

are calculated self-consistently by solving simultaneously thgere P, and P, are the gas and the CR pressure, respectively,
hydro-dynamical equations together with the cosmic-ray trangnd e, = P,/p(y, — 1) + u%/2 is the total energy density
port equation (see Selct. B.1). of the gas per unit mass. Hed¢dt = 9/0t + ud/0x is the

The function[(8) is plotted in Figl2 for = 0.35 vs. the total Lagrangian time derivative. We assume= 5/3 for the
particle velocity normalized t6 = vko/w. . In Fig[2 we have thermal gas adiabatic index throughout this work. The injection
also reproduced this function as given in Fig. 2 of Malkov &nergy loss tern$(z, t) accounts for the energy transferred to
Volk (1998) to allow a direct comparison. The strong velocitiligh energy particles and will be discussed later. Egs.[(4)—(6) are
> Especially downstream, wheio/B. < 1, the o solved using a Total Variation Diminishing (TVD) code based

y : 0/51 , the particle-wave on the scheme of Hartef (1983).

interaction can by no means descr_lbed by quasi-linear theor_y, whic We assume that the shock Mach numbeér= u, /c. (with
would be valid inthe opposite case, i.e. for incoherent waves with small 1/9 ,
/2 the upstream sound speed) exceeds theahlfv

amplitudes. In fact, the calculation of the transparency functiomis © = (vP/p) - 1/
based on results of the quasi-linear theory (Malkov 1998; Malkolach numbet\/y = ug/cy < M (With ¢, = B/(47p) /2 the
private communication). This point is noteworthy, because of exigtpstream Alfén speed). Then the diffusion-convection equa-
ing mis-interpretations of the work of Malkol (1998) in the literaturéion, which describes the time evolution of the phase-space den-
(Baring[1999). sity f(p, z, t) of the high energy CRs (e.g. Skillihg 1975), takes
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the form: p according tdI" = pm, Py /pks. Herep is the mean molec-
df 19u of & 9 ular weight which is assumed to be one, dndis the Boltz-
—— = oo Pt (kEp) o f (7)  mann constant. The details of how the momentum distribution
dt 30x" Op Ox 0 . . )
is calculated in a time step from— At to ¢ are as follows.
The diffusion coefficients(p, x) is assumed to be a scalarFirst we define the CR part of the momentum distribution by
Transforming to the variableg := In(p) and g(y, x,t) := gcr(t—At) = g(t — At) — g (t — At). Now the CR diffusion-
ptf(p,z,t) (cf. Falle & Giddings 198]7; Kang & Jonés 1891)convection equation (EG! 8) is solved for the entire momentum
Eg. (@) can be written as space, including the thermal Maxwell distribution, to find the
updated distribution functio§i(p, x, t). For momenta below the
dg 10u (0dg 0 0 o - : .
= = -~ F —4g )+ = | k(y, ) =g . (8) critical momentum ofr..(p.iv) = 0 any particle acceleration
dt 30x \ Oy Ox oz

must be suppressed, and therefore the result of Eq. (8) is rejected
This equation is solved using an implicit Crank-NicholsoRy restoring the Maxwellian distribution given in EQ.[11). For
scheme, which is second order in space and time (see e.g. Falgnenta above the critical momentum and upstream of the
& Giddings[1987). shock, we use the transparency function as a filtegfprz, t)

The high energy particles provide an additional pressuaé described below, sinege..(p,t) corresponds to the fraction
to the system that has to be included in the set of hydrefthe phase-space density at a given momentum that can cross
dynamical equations (with normalized to the proton momen-the shock from downstream to upstream. The final distribution

tump/mpe — p): at timet is then given byy(p, z, t) in the following way:
4 9 7 4 dp §CR(]9,CC,t) = f](p,m,t) _gM(pam7t)a (12)
Pe = smmye /(f = fu)p Wk ®)  gon(p,2,t) = gon(p, 2.t — AL) + Tese(p, t)
0 : [QCR(pa z, t) - gCR(p7 Zz, t— At)] ) (13)

This definition of the CR pressui includes the difference of = g(p 2. 1) = gon(p, z,t) + gu(p, 2, t) . (14)

the phase-space density from the Maxwellian distributfgn

and defines the sub-population which we identify as CRs. Th@ effectively at the lower momentum limit wherg. (p) = 0

CR energy density is defined as the Eqg.[(8) has no effect at all, while at the higher momen-
tum limit wherer,..(p) = 1 the result of Eq[{8) is used with-

.
out further modification. Only in the intermediate momentum
E, = 4wm,c? /(f - )PV +1-1)dp. (10)  regime where) < T...(p) < 1, the transparency function rep-
0 resents the injection process (i.e. thermal leakage). Thus the
transparency function defines self-consistently the momentum
3.2. Injection scheme boundary above which the patrticle acceleration mechanism can

. . L . work, and also defines the transition region between thermal
We do not include an additional injection term in Ed. (8), b slasma and accelerated particles.

fﬁufﬁ n oulr(;]jc?[d_gl [[njectjlf)hn IS ?escrtlgec: self—ct())ns%tentlyffrt M The particle injection rate into the CR population can be

€ thermal distribution. 1 heretore, the lower boundary o naestimated from the adiabatic change of the momentum due to

momentum distribution of the CR population must match t Re velocity gradient of the flow:

upper boundary of the momentum distribution of the gas. The '

distinction between these populations is, of course, only technij- B 5 op’

cal, and defined by the validity of the relevant dynamical eun—(p’I’t) = dnpf(p,2,1) ot

tions. We use a Maxwell distribution according to the actual 4 v
: : T 4 ou

density and temperature of the plasma. Instead of a fixed mo- =3P f(p, x,t)a—

mentum boundary we use here the transparency funetioto v

define where the lower boundary of the CR momentum distithen the energy loss rate of the gas can be written as

bution matches the momentum distribution of the bulk plasma.

(15)

The injection into the high energy part of the phase-space djs- 1 9 T OTeee(Ps 1) 5
tribution (i.e. the CRs) is then directly provided by the bulk o’?(w’ t) = "¢ Op P Q(p,z,t) dp, (16)
the plasma. 0
The initial Maxwellian phase-space densjty(p, x,t) is 9 , Ou ‘X’aTm(p? t) s
given by: = —;Tmpc %/Tpp f(p,x,t)dp.
0

gM(pam7t) = p4fM(p7x7t) . ) .
4 .2 Note here the conditiofir...(p, t)/0p # 0 in fact defines the
n(z,t)p P o
@, kT2 exp (o) (11) “injection pool” where the thermal leakage takes place. Due
poe pe to the steep dependence of both the Maxwell distribution and
wheren(z,t) = p/m,, is the particle number density, and thehe transparency function on the particle momentum, the mo-
temperature is defined by the local gas presgurand density mentum range of the injection pool is well restricted. Either



916 U.D.J. Gieseler et al.: Time dependent cosmic-ray shock acceleration with self-consistent injection

below or above this momentum range.(p) = constant, so 3.4. Initial and boundary conditions

O7e.c(p;)/Op = 0. If the transparency function is given by aWe assume there is no pre-existing CR population, so the initial

?;%2:22&?&25]& Eaﬁé@] ég né)s ! (Ii CE):SC C);ggs?)t?nev:lwiiﬁut?‘g F{:}rticle distribution is purely Maxwellian with the local plasma
- 4 T emperature and density. We use open boundary conditions for
jection takes place at a single injection momentum rather th%n o . : . i

the description of the thermal plasma in our simulations. In mo
an extended momentum range.

The transparency function.. given by Eq.[B) depends Onmentum space, the lower boundary is provided by the Maxwell

c§ii_stribution as discussed above. At the highest momentum and

the downstream plasma velocity, which is averaged over the di <0 at the upstream boundary in configuration-space we use a

fusion length of the particles with momentum at the injectio% ’p y 9 ) pace \ .

: . . - free escape’ boundary. Downstream we use a ‘no diffusive flux

threshold. This dependence is also important for the injection . o

7 . . o oundary, where the cosmic-ray density is always kept constant

efficiency, and leads to a regulation mechanism similar to the 7

. . L across the boundary. However, the grid size was chosen so large

above beam wave interaction. If the initial injection is so stronI the simulations we bresent here. that the CoSMiIc-ray pressure
that a significant amount of energy is transferred from the glss t all times essenti:II ~ero at b(,)th boundaries yp

to high energy patrticles, the downstream plasma cools, and, i y '

addition, the downstream bulk velocity decreases in the shock
frame due to the shock modification of the cosmic-ray popf}: Results for strong shocks

lation. Because the injection pool is in the high energy tail gfirst we consider a strong shock with an initial Mach number
the Maxwellian distribution of the gas, the cooling decreasgg s — 30. Unlike an ordinary hydrodynamic simulation, the
significantly the injection rate. However, the deceleration, Eimulation of the CR shock acceleration requires specification
turn, allows for a modest increase of the phase-space of pagtithree physical parametets, /c, po /m,,, and the shock Mach
clesthat can be injected. This is expressed byftiependence nymber in addition to the diffusion coefficient. We adopted

of Eq. [3). This velocity dependence balances partly the redyge following nominal physical scales for physical parameters:
tion of injection due to the cooling of the plasma. Remarkably, — 5000 kms™?, po/mp = 0.03cm™3, t5 = 4.0 -10* s,

these two effects lead to a vemgakdependence of the injection;,; — 2.0 10" cm, Py = pou2 = 1.25 - 10~ 8 ergem 3. We

efficiency one in the vicinity ofe ~ 0.35. use¢ = 100 for the simulations presented here, and a magnetic
field of B = 3uG. The initial conditions are specified as fol-
3.3. Diffusion model lows: pup = po, tup = —uo, ANA Py up = 6.667 - 10~ Pyg

in the upstream region, whiley = 3.987p¢, us = —0.25u,
Since the injection process is included self-consistently, the djfgﬁd — 0.75P,, downstream. These values reflect the shock
fusion coefficient is the only remaining free parameter in O{limp conditions in the rest-frame of the shock.
model. We assume the particle diffusion is based on the scat-\ye define the diffusion length and time at a given momen-
tering off the self-generated waves which have a field cofgmm asla(p) = k(p)/uo andta(p) = k(p)/u. For a proper
ponent perpendicular to the plasma flow. The compression@ergence, the spatial grid size should be smaller than the
the plasma leads to an amplification of these waves, whighfysion length of the injection pool particleg(zo ~ 0.04
is described by scaling the diffusion coefficientras< 1/p. in upstream forp,,, ~ 0.02). On the other hand, the spatial
In our one dimensional model we have to describe diffusiQBgion of the calculation in upstream and downstream should
along the mean magnetic field. The lower limit for the difpe |arger than the diffusion length-scale of the particles with
fusion coefficient is the Bohm diffusion coefficiert,(p) =  the highest energies reached at the end of our simulation period
(3-10*2 em®/s/B,,c) p* /(1 + p*)'/? , whereB,, isthe mag- (7, /.:1"~ 230 for puax ~ 2.5). So we used 51200 uniform grid
netic field strength in units of micro-gauss. For the present calnes for /zo = [—250, 250], with the shock initially at: = 0
culations we assume the diffusion coefficient is simply relateghg the grid size\z /2 = 0.01 = 0.25 - I4(p,;) /zo. We use
to Bohm diffusion as 128 uniform grid zones ifog(p) for log(p) = [—3.0,0.477].
K(p) = C K po/p(z) . 17) We integrate the solutions until= 2{10750 which correspon.ds

to tq for puax ~ 2.5, so the CR particles became only mildly
We have introduced the factqrto account for the higher dif- relativistic by the end of our simulations.
fusion in the direction of the mean magnetic field, because this
direction is parallel to the shock normal, and, therefore, releve}p
for the acceleration process at quasi-parallel shocks. Althoug
the time scale for the cosmic-ray acceleration does dependrig[d shows the normalized gas densiti:), gas pressure
the diffusion coefficient, the basic self regulation process for ti#& (), plasma velocity.(x) and the cosmic-ray pressufe(x)
injection problem which we investigate here is not dependemter the spatial length, for different times. This shows clearly
on the choice of. Therefore, since our study intends to focuthe basic features of the shock modification by a diffusive com-
on the general time dependent behavior of this injection modegnent; that is, the adiabatic precursor compression and the sub-
we do notinclude a completely self-consistent scattering modathock. The CR pressui. is responsible for the deceleration
where the diffusion coefficient is coupled to the spectrum of tlaed compression of the plasma flow in the precursor region up-
Alfv én waves. stream of the sub-shock, which still remains strong. As a result,

é. Dynamical evolution
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% /%, % /x functionr.... Both functions are presented foe= O(do_tte_d)}t =10to
°  (dot-dashed), = 120 ¢, (dashed), and = 240 t, (solid line). For the
Fig. 4.Gas density/ po, pressure’, / Pyo, velocityu /uo, and cosmic- parameters used see Hify. 4 and corresponding text.
ray pressureP. /Py, at timest = 0 (dotted),t = 120¢, (dashed)
andt = 240t (solid line). The shock Mach number i = 30.0,
e = 0.35 and¢ = 100. The initial upstream gas pressurefts= mal part of the distribution the cooling of the postshock gas due
6.667 - 10" Pyo. to the energy flux into the CR particles is responsible for the
shift of the Maxwellian distribution towards lower energies. We
have also plotted the transparency functigpat the same sim-
the gas is compressed to higher density downstream of the sulation times. According to Ed.(16) the injection rate into the
shock. non-thermal distribution depends on overlapdoaf../dp and
The cosmic-ray pressure immediately downstream of tpép) that determines the injection pool. One can see that ini-
sub-shock has not reached a steady state yet. The reason iditibt the injection rate is high and so the postshock gas cools
for a the non-thermal particles with a momentum distributioguickly, resulting in narrowing down of the injection pool. This
f o< p~%with s < 4, the energy density is an increasing functionauses the injection rate to decrease. But then the transparency
of pmax. This applies even if the injection is shut down comfunction also shifts toward lower momenta, because the down-
pletely, like for and-function type injection in time, as shownstream plasma velocity. decreases as the postshock gas cools.
by Drury (1983). We expect tha®. will continue to increase The combination of the shift af... toward lower momenta and
after our integration time = 240t,, which leads to a signifi- the decrease of the particles in the Maxwellian tail due to the gas
cant modification of the shock structure and to the steepeningrobling leads to the self-regulation of the injection rate at a quite
the power-law distribution of suprathermal particles. The sinstable value. According to the plot gfp) att = 120¢, and
ulations of such non-linear evolution, however, require mue¢h= 240t,, the Maxwell distribution turns into a power-law at
greater spatial region and grid zones and also longer integratianalmost constant “effective injection momentum” which de-
time than what we could afford in our simulations. termines the magnitude of the CR distribution functigp) at a
In real astrophysical shocks, the energy density is limitetiable value (about/200 of the thermal peak). The value of this
by radiation losses in the case of electrons or more generallydmnstant effective injection momentum can be translated into the
particle escape due to the finite extent of the acceleration regipatameter; = p,,;/p.. ~ 2.3 (wWherep,, = 2,/myksT) de-
For the maximum energy of particlgs.(.. ~ 2.5) achieved by fined by Kang & Jones$ (1995). But this is somewhat larger than
t = 240ty in this simulation, neither effect is important, andyhat they useddq = 1.9 — 1.95).
therefore, not included. The narrow injection pool also leads to a rather sharp transi-
tion from the Maxwell distribution to the non-thermal part start-
ing shortly above the effective injection momentum (seelEig. 5).
The canonical result in the test particle limjtp) = p* f(p) =
The phase-space distributigtip, z,t) = p* f(p,x,t) imme- p*p~* =constant, forastrong shock with= 3r/(r—1) = 4is
diately (three zones) behind the sub-shock is shown inFigiéproduced very well in our simulations. The same energy spec-
for three different times. Initially this distribution is given by arum is shown in Fid.J6 in the form of the omni-directional flux
Maxwell distribution, as shown by the dotted line. At the thetF'(E)dE o v p? f(p)dp vs. proton kinetic energy downstream

4.2. Energy distribution
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flux I transferred to CRs is then given by

2
P1UL Piy;
m 2m’

I'=¢ (18)
whereu, is the upstream plasma velocity in the shock frame, and
p1 is the upstream density. From the fact that the injected energy
flux I must be equal to the spatial integral of the injection energy
losstermS(z), thatis,] = [ S(z) dz and by assuming momen-
tarily a step function for the transparencgy, (p) = H(p—pi.;),

Flux[1/(cm? s sr keV)]

we get:
10°
Ar [ Oupl f(Dins)
t = —— — = d 19
1077 g( ) 3 ax nl u1 x Y ( )
wheren; = p;/m is the upstream number density. This

is equivalent to the injection parameter used by Kang &

Jones(1995). The so-defined injection paramgierhowever,

not an exact measure of the number of particles contributing to

2 - - - the population of cosmic rays, because the acceleration process
10 10 10 10 10 cannot be described by shifting particles instantaneous from

FunlkeVl thermal energies to an injection momentpyn. Furthermoreg

Fig. 6. Omni-directional flux vs. proton kinetic energy, foe 0 (dot- f:lepends_ strongly on the chosen Injection mqmemymNh!ch

ted),t — 10, (dot-dashed)t — 120, (dashed), and — 240, 1S not a fixed single parameter in our nume'ncal smulaﬂon.

(solid line). These distributions are identical to those shown ifFig. 5. A Method to measure the injection efficiency without spec-

For the parameters used see Fig. 4 and corresponding text. ifying the injection momentum, is to compare the number of
particles in the CR part to the number of particles swept through

the shock. According to our definition of the CR population we

. , .. can write for the CR number density
of the shock normalized to= 0. At energies above the injec-

tion pool we expect, for the strong shoek+ 4) simulated here, _ / 3

the resultF'(E) o« E=7, witho = {(r +2)/(r — 1)}/2 = 1, nee(z,t) = [ fer(p,z,t)d°p

which is reproduced with high accuracy. 3
In using the standard cosmic-ray transport equation, we = /(f(p’x’t) = fulp,z, 1)) d%p.

have, of course, made use of the diffusion approximation, which ) i
may introduce an error especially for~ u,. Using an eigen- The fraction of particles that has been swept through the shock

function method, Kirk & Schneidef (1989) have explicitly Ca@fterthe';imet, andtheninjected into the cosmic-ray distribution
culated the angular distribution of accelerated particles and ithen given by

counted for effects of a strong anisotropy especially at low par- [ nen(x,t)dz

ticle velocities. They were able to calculate the injection ef-(t) = ——
ficiency without recourse to the diffusion approximation, and
found always lower efficiencies compared to those in the diffithe time development of this injection efficiency is plotted in
sion approximation. Using the initial thermal distribution, wéig.[4 for three values of the inverse wave amplitad&ecall

have estimated an effective injection momentum from the petilat Malkov [1998) found.3 < € < 0.4. In the very begin-

of the distribution functiong,, (p)7...(p). For the shock param- ning of the simulation the injection does depend strongly on
eters considered here and éor 0.35 we get an effective initial the wave-amplitude, because of the very steep dependence of
injection velocity of abous700 kms ™' (in the shock frame). the Maxwell distribution at the injection energies. However, as
For this injection velocityr = 4 andug = 5000kms™!, they described above, a strong initial injection leads to a temperature
estimate a reduction effect ef 8%, leaving the diffusion ap- decrease of the plasma, and to a shift of the Maxwell distri-
proximation as quite reasonable even in this regime. bution, which balances this effect. Therefore at later times the
fraction of injected particles;", does not depend strongly on the
initial wave-amplitude. At time /t, = 250 (ort = 1.0 - 107s)

we get a fraction of injected particles@f = (1.540.4) - 1073

To describe the injection efficiency often a paraméterused for the intervale = 0.35 £ 0.5.

for the fraction of the in-flowing plasma patrticles that are in- To measure the efficiency of the particle acceleration at a
stantaneously accelerated to a fixed injection momemiym shock front, we compare the energy flux in cosmic rays to the
(e.g. Falle & Giddings 1987; Dorfi 1990; Jones & Kang 199Q@ptal energy which is available from the downstream plasma
Zank et al 1993; Berezhko et al. 1994). The injection ener§igw. This energy consists of the sum of kinetic energy and the
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4.3. Injection and acceleration efficiencies
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05 7 done on a somewhat larger grid with 60416 uniform zones for

n(t) 1 x/xe = [-300, 300]. For the value = 0.35, which was calcu-
lated by Malkov[(1998), we see that about 20% of the available
energy in this shock is transferred into the cosmic-ray popu-
lation. The acceleration efficiency has, however, not reached a
4 b . . . .

< 1 real steady state value, but is increasing wijth) oc t* with

s 1 « =~ 0.1. The acceleration efficiency achieved by this time is
< given byn = (18 £ 5)% for e = 0.35 & 0.5. Thus a substan-

1 tial amount of the initial energy flux at a shock front can be
cl v v 4 transferred to a high energy part of the distribution, during the
relatively short time we have simulated here.

0.4

Q.3

Q.2

Q.1

5. Results for weak shocks

1 When the initial compression ratio decreases for a weak shock,
{1 theinjection process is influenced in several ways by the change
- in the plasma and magnetic field properties. To investigate the
1 effects of a lower compression ratio and lower Mach number on
the injection process we will consider an example with 2.5
4 and M = 2.24. At such a shock, the phase space for which
35 1 the downstream particles can re-cross the shock to upstream
e ‘ ? 1 is decreased compared to the strong shock case, because the

° 50 100 150 200 260 300 shock velocity in the downstream rest framge = ug/r is in-

t/t versely proportional to the compression ratio. At the same time

Fig. 7. Energy efficiency;(¢) and the fraction of cosmic-ray particlesthe plasma is heated less, because the transformation Qf kmejuc
¢*(t) for three values of the inverse wave-amplitudat a strong, €Nergy tothermal energy depends also onthe compression ratio;

M = 30, shock. For the parameters used seelFig. 4 and correspondi¥ge I o< mpuZ(1—1/r?). This shifts the downstream Maxwell
text. distribution to lower energies, as compared to higher compres-

sion, and, therefore, influences strongly the number of particles
gas enthalpy. The fraction of this initial energy flux, which i§ the momentum range making the potential injection pool. On

transferred to CRs is given by the other hand, at quasi-parallel shocks, the amplitude of the
, magnetic field wave spectrul, is amplified downstream by
o %Ud(t)ﬂ (t) 22) the factor-. For a decreasing compression ratio, the downstream
n = ) I
%pduﬁ T ngludpgd plasma becomes more transparent. This balances the effects of

the phase space and temperature changes described above. The
whereuyg = us(1 — 1/7) is the initial downstream plasma ve-nitial downstream (inverse) wave-amplitude= B,/B, was
locity in the upstream rest frame. The definition of the efficiena@alculated to be in the interval = [0.3,...,0.4] in the limit

n(t) is similar to the definition from gk et al. (1984). However, of strong shocks (Malkov 1998; Malkov &&1k[1998). An ex-

Eg. (22) compares the energy flux in CRs not only to the kineti@polation to weak shocks with= 2.5 of this interval by mul-
energy flux of the gas, but also includes the gas enthalpy flux. Wagying e with the factor of (4/2.5) gives ~ [0.48, ..., 0.64].
measure the CR pressure immediately downstream of the sHibwever, the calculation of the transparency function was based
shock, where it will first reach the constant downstream valum, the assumption of an high amplitude wave spectrum down-
in case a steady state does exist (see below). The time depensteeam ¢ < 1). With decreasing wave amplitude the velocity
values are averaged over the intervagk, = [-0.5ust,...,0] dependence of the transparency function changes towards its
in the shock frame to avoid influence of small scale modifasymptotic function, defined by particle kinematics without a
cations of the cosmic-ray pressure and plasma velocity on thave field:7(v) = 0 for v < ug andr(v) = 1 for v > us.
injection efficiency. When the quantities,, P. and~. have On the other hand, this limit may be reached in reality only if
reached steady-state distributions downstream of the sub-shdle& resulting beam from downstream to upstream is too weak to
n(t) is also no longer time dependent. produce a magnetic field instability.

The evolution of the energy efficiency(t), is plotted in As an initial exploration of this behavior, we will present
Fig.[a for three different magnetic-field wave amplitudes. Séwere results for the spatial and momentum distributions and the
Fig.[4 and the description in Sedt. 4 for the corresponding perergy and particle injection efficiency for an inverse magnetic
rameters. The case= 0.4 corresponds to the highest injectiorfields amplitude parametein the range = [0.4, ...,0.7]. We
efficiency and therefore leads to the highest cosmic-ray pressina@ve included the value= 0.4 to compare the results directly
To assure avanishing value of the cosmic-ray pressure atthe spathe strong shock case. This can demonstrate the principal
tial grid boundaries at all times, the calculation éor 0.4 was effect of weaker shocks on the injection process. The resulting
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Fig. 8.Gas density/ po, pressure’; / Pyo, velocityu /uo, and cosmic- parameters used see Hify. 8 and corresponding text.

ray pressure’. / Py, at timest = 0 (dotted),t = 70t (dashed) and

t = 140 to (solid line). The shock Mach numberig = 2.24,¢ = 0.6,

and¢ = 100. The initial upstream gas pressureids= 0.12P. The downstream momentum distribution in Fiy. 9 shows

clearly the steeper spectrum of the non-thermal part, which

asymptotes to the standard resylp) < p—*+* with s =
injection efficiencies and shock modifications for all values &f°/(r —1) = 5forr = 2.5. It can be seen also, that the thermal
€ shown here should be considered as lower limits for the wedrt of the distribution is not as much modified as in the strong

shock withr = 2.5 (M = 2.24) as described above. shock case (compare Hig. 5). Because the modification of the
The physical scales are specified as follows:= 1.11 - transparency function over time depends only on changes in the
10° s, 79 = 3.33 - 10'3 cm, up = 3000kms™ ", po/m, = downstream plasma velocity, it remains essentially unchanged.

0.03cm™3, Py = 4.52- 10~ ergem ™. We use( = 100 for The energy efficiency)(t), as defined in Eq{22), is lower
the simulations presented here, and a magnetic fiel# e  roughly by a factor of two compared to the strong shock case,
3uG. The initial values for thé// = 2.24 case are,, = py, because of the steeper non-thermal spectrum and the resulting
Uy = —ug, and Py, = 0.12P, in the upstream region, energy density (compare Fig. 7 and [Eid. 10). Our results for the
while pg = 2.5pg, uz = —0.4ug, and P, q = 0.72P, in wave amplitude(.5 < e < 0.7, give the injection efficiency,
the downstream. We have used 44032 uniform grid zones &r= (2.5+0.7) - 1072 attimet = 140t, = 1.55-10"s, where
x/xg = [—170,130], with the shock initially atr = 0, and the time evolution can be considered as almost a steady state.
128 uniform grid zones itog(p) for log(p) = [—3.0,0]. The The number of particles, which are in the non-thermal part is
corresponding Mach numberid = 2.24. comparable to the strong shock considered above at this time.
Fig[8 shows the normalized gas densify:), gas pressure In addition, we point out that the application of the above de-
P,(x), plasma velocity:(z) and the cosmic-ray pressufe(z)  scribed injection model to weak shocks is an extrapolation, and
over the spatial length, for different times. Because the resultwe believe would yield lower limits on the injection efficiency.
ing non-thermal spectrum produced as a result of the injection
and particle acceleration is steeper than in the strong shock CASR onclusions
the pressuré, in this distribution remains small compared to
the gas pressure at all times. As a result, the shock is modifi&d have developed a numerical method to include self-
only slightly. Also the temperature of the downstream plasneansistently the injection of the supra-thermal particles into the
remains almost constant. Furthermore, because the energy d@esmic-ray population at quasi-parallel shocks according to the
sity in non-thermal particles is not an increasing function ianalytic solution of Malkov[(1998). Toward this end, we have
time, the shock modification can reach a steady state earlieradepted the “transparency function’. (v, us) which expresses
compared to the strong shock case. In fact, at time140t,, the probability that supra-thermal particles at a given velocity
shown in Figl8, the pressutg,, P, the velocityu and the can leak upstream through the magnetic waves, based on non-
densityp immediately downstream has reached almost a stedihear particle interactions with self-generated waves. We have
state. incorporated the transparency function into the existing numer-
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RS of initial wave-amplitude®).3 < ¢ < 0.4 ataM = 30
0175 | n(t) B shock. For aM = 2.24 shock, a slightly higher injection
o1s L ] is achieved at* = (2.5 £ 0.7) - 1073, but this could be a

lower limit. Such values for the particle injection efficiency
have been used as a parameter for spherically expanding
SNRs by several authors (Ddrfi 1990; Jones & Kang 1992;
Berezhko et al. 1995; Berezhko &3k[2000). These values
are well above the “critical injection rate” ef..;; ~ 10~
N above which spherical shocks of this Mach number are CR
dominated according to Berezhko et al. (1995).
£/t 3. Due to computational limitations of using a Bohm type dif-

0 . . .
fusion model, we have integrated our models until the max-

0.125 ; —
a1 I
0.075
0.05 I

0.025

S imum momentum reaches abdt,,../m,c) ~ 1. For the
£()/107° 1 M = 30 shock model, the energy flux in the total CR dis-
® ] tribution was abouti8% + 5% of the energy flux in the

thermal plasma and shocks didn't become CR dominated
and smoothed completely by the end of our simulations.
For theM = 2.24 shock model, the acceleration efficiency

) i 7 is lower by a factor of two compared to the high Mach shock
, [ c ] because of the smaller velocity jump across the shock.

e =0.7
e =0.6
e=0.5
- £=04 ] 4. Just above the injection pool, the distribution function
ol b e ] changes sharply from a Maxwell distribution to an ap-
0 20 40 60 80 100 120 140 160 . . R
t/t proximate power-law whose index is close to the test-
’ particle slope. We estimated this critical momentum as
Fig. 10.Energy efficiency)(t) and the fraction of cosmic-ray particles Dinj ™~ (2_2 — 2.3) - p.,, Wherep,, = 2 mpkpT. This
£ (t) for four values of the inverse wave-amplitudet a weak shock.  determines the number of particles in the injection pool
For the parameters used see Fjg. 8 and corresponding text. by f(pu;) o eXp(—p?nj/Qmpk‘BT). For strong shocks this

translates into a distribution function at injection energies

ical code which solves the cosmic-ray transport equation along ©F 9(Pini) ~ (1/100 = 1/200)g(p..)-

with the gas dynamics equations. In order to investigate the )
interaction of high energy particles, accelerated by the Fermi While the weak shock model éff = 2.24 reaches a steady-
process, with the underlying plasma flovithoutusing a free State, the strong shock model 8f = 30 has not reached a

parameter for the injection efficiency, we have applied our codteady-state by the end of our simulation. We expect for the
with the new injection scheme to both stronf (= 30) and Strong shock that the CR pressure continues to increase and the

weak (M = 2.24) parallel shocks. shock becomes CR dominated, leading to the greater total ve-
The main conclusions from the simulation results are ity jump and more efficient acceleration. In realistic shocks
follows: such as SNRs, however, escaping particles due to non-planar

geometry or lack of scattering at high momentum are likely to
1. Theinjection process is regulated by the overlap of the pdgecome important. To resolve this non-linear evolution, much
ulation of supra-thermal particles in the injection pool anidnger physical time scales have to be simulated, until CRs reach
the functiondr...(p,t)/Op. As being in the high energy energies where escape is likely to be important. The key prob-
tail of the Maxwell velocity distribution, the population inlem here is the range in configuration and momentum space that
the injection pool depends strongly on the gas temperatimas to be computed. Our method uses a grid with uniform cells
and the particle momentum. The functién,.(p, t)/Opbe- in configuration space, chosen fine enough to capture the evo-
haves like a delta-function defined near a narrow injectidation of g(z, p) at near-thermal momenta where the diffusion
pool. As the postshock gas cools due to high initial injectionpefficient is proportional tp? (Bohm diffusion). This leads to
the Maxwell distribution shifts to lower momenta. But the@ computationally extremely expensive calculation, especially
transparency function also shifts to lower momenta, as wedecause the grid has to be large enough to contain the diffusion
due to its dependence on the postshock flow velocity. Ademgth scale of the highest momentum CRs. The problem can be
result, the injection rate reaches and stays at a stable valuesafved on a much larger time scale by using an adaptive mesh re-
ter a quick initial adjustment, and also depends only weakiimement (AMR) code with the shock tracking techniques (Kang
on the initial conditions. This self-regulated injection mag Jone$1999). In the near future we plan to incorporate the in-
imply a broad application of our simulation methods.  jection model presented here into the powerful shock tracking
2. The fraction of the background particles that are accelerats®llR-code, to calculate the evolution of the phase-space dis-
to form the non-thermal part of the distribution turns out ttribution of the plasma during different phases of SNRs. This
be inthe range.2 - 1073 < ¢* < 1.9 - 1073 for the range would allow us to investigate with a plasma-physical based in-
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