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Abstract. One of the key questions to understanding the effi-
ciency of diffusive shock acceleration of the cosmic rays (CRs)
is the injection process from thermal particles. A self-consistent
injection model based on the interactions of the suprathermal
particles with self-generated magneto-hydrodynamic waves has
been developed recently by Malkov (1998). By adopting this
analytic solution, a numerical treatment of the plasma-physical
injection model at a strong quasi-parallel shock has been de-
vised and incorporated into the combined gas dynamics and
the CR diffusion-convection code. In order to investigate self-
consistently the injection and acceleration efficiencies, we have
applied this code to the CR modified shocks of both high and
low Mach numbers (M = 30 andM = 2.24) with a Bohm
type diffusion model. Both simulations have been carried out
until the maximum momentum(pmax/mpc) ∼ 1 is achieved to
illustrate early evolution of a Bohm type diffusion. We find the
injection process is self-regulated in such a way that the injec-
tion rate reaches and stays at a nearly stable value after quick
initial adjustment. For both shocks about10−3 of the incoming
thermal particles are injected into the CRs. For the weak shock,
the shock has reached a steady state within our integration time
and∼ 10% of the total available shock energy is transfered into
the CR energy density. The strong shock has achieved a higher
acceleration efficiency of∼ 20% by the end of our simulation,
but has not yet reached a steady-state. With such efficiencies
shocks do not become CR-dominated or smoothed completely
during the early stages when the particles are only mildly rela-
tivistic. Later, as the CR pressure becomes dominated by highly
relativistic particles that situation should change, but is difficult
to compute, since the maximum CR momentum increases ap-
proximately linearly with time for this model. In the near future
we intend to extend such shock simulations as these to include
much higher CR momenta using an adaptive mesh refinement
technique currently under development.
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1. Introduction

The non-thermal energy distributions of cosmic ray ions or
source distributions of electrons emitting synchrotron radiation
in various astrophysical objects are commonly described as pro-
duced by the first order Fermi acceleration process at shocks
(for reviews see Drury 1983; Blandford & Eichler 1987; Kirk
et al. 1994).

When particles diffuse1 off the moving scattering centers
in a region divided by a velocity discontinuity (shock), these
particles can be accelerated if their mean free paths exceed the
shock thickness. The relative momentum gain for a cycle of
two crossings of the shock is then proportional to the veloc-
ity difference across the shock, i.e. of first order with respect
to the shock velocity (Bell 1978). In astrophysical collisionless
plasmas an electro-magnetic field must be present to change the
energy of particles. Waves or irregularities in this field provide
particle scattering, which leads to diffusion. Consider a shock
with velocity us > 0 propagating into a plasma at rest with
densityρ and with a homogeneous magnetic fieldB0 in the di-
rection of the shock normal. The plasma is compressed to the
densityρd by the shock, and flows downstream with the ve-
locity ud = us(1 − 1/r), wherer = ρd/ρ is the compression
ratio. Particles with the mean downstream velocity〈v〉 = ud
cannot cross the shock from downstream to upstream, because
〈v〉 < us. In addition the shock may not be a discontinuity for a
particle at this energy, because the gyro radius of the thermal par-
ticles is of the order of the shock thickness, leading to adiabatic
energy change while crossing the shock. Because the plasma
is also heated downstream of the shock, some supra-thermal
particles in the high energy tail of the Maxwellian velocity dis-
tribution may gain energies and have velocities that allow them
to re-cross the shock. In a homogeneous magnetic field, due to
lack of scattering centers these particles would escape upstream
without returning to the shock. Then, the acceleration mecha-
nism would not apply. However, the population of particles that
can move upstream provide a seed particle beam, which gen-
erates Alfv́en waves responsible for scattering and, therefore,
diffusion, which is an essential element of the first order Fermi
acceleration process.

1 In general, also anomalous transport likesub-diffusion or super-
diffusion can be realized.
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The problem of particle acceleration from thermal energies
up to relativistic particle energies is highly non-linear, as first
pointed out by Eichler (1979). First, the energy transferred from
the bulk of the plasma to the sub-population of accelerated par-
ticles can change the thermodynamic properties of the plasma
like the temperature and density. In addition, the accelerated
particles provide their own pressure in the system, which, since
it differs from the thermal pressure, modifies the velocity struc-
ture of the shock transition. Second, the waves generated by
particles escaping upstream determine the transport properties
of the plasma, and, therefore, regulate this wave generating es-
cape itself. The manner in which the wave-particle interactions
control the fraction of plasma particles that can escape upstream
to participate in the Fermi process is commonly calledinjection.
This is a basic aspect of the plasma of collisionless shocks and is
itself highly non-linear. This injection problem is fundamentally
related to the question of the efficiency of particle acceleration
at shocks by the Fermi process.

Different numerical methods have been used to treat the in-
jection problem of CR modified shocks. In Monte-Carlo simu-
lations of non-linear particle acceleration the details of a posited
scattering law provide an injection parameter, but one not de-
termined self-consistently from the particle wave interaction
(e.g. Ellison et al. 1996; Baring et al. 1999). In contrast to pure
kinematical effects from shock velocity, particle speed and in-
clination angle of magnetic field and shock, the waves respon-
sible for particle scattering depend on plasma properties like
temperature and the beam strength of the wave generating par-
ticles itself. These coupled and time dependent effects are not
easy to incorporate into a Monte-Carlo approach. Time depen-
dent Monte-Carlo simulations have been presented by Knerr et
al. (1996), but still with a prescribed scattering law, as a param-
eterization of injection.

In the two-fluid approach the cosmic rays are treated as a
diffusive gas without following their momentum distribution.
The energy transfer into CRs in these models is based on a
fraction of the upstream gas particles, that are instantaneously
accelerated at the shock (Dorfi 1990), around the shock (Jones &
Kang 1990) or at velocity gradients (Zank et al. 1993). In prac-
tical terms, because the shock is the most prominent velocity
gradient in the system, these techniques are very closely related,
as pointed out by Kang & Jones (1995). Essentially the same
parameterization is also used in the numerical solution of the
hydro-dynamical equations coupled to the momentum depen-
dent cosmic-ray transport equation (e.g. Falle & Giddings 1987;
Kang & Jones 1991; Berezhko et al. 1994).

Kang & Jones (1995) used a numerical injection model with
two essentially free parameters which describe boundaries in
momentum at which particles can be accelerated (p1 = c1 · pth

wherepth is the peak momentum of the Maxwell distribution)
and from which these contribute to the cosmic-ray pressure
(p2 = c2 · pth). Still, these momentum boundaries are free pa-
rameters, which can be translated into a particle fraction of the
upstream gas. However, models that incorporate more details of
the plasma physics of the background plasma, and, therefore, the
CRs at injection energies are really necessary to constrain the

phase-space function and therefore determine these parameters.
In this way we can incorporate self-consistent plasma physical
models into numerical simulations of CR acceleration.

Such a plasma physical model based on non-linear interac-
tions of particles with self-generated waves in a shocked plasma
has been investigated numerically by solving the kinetic equa-
tions of ions in a magnetic field, and treating the electrons as
a background fluid (Quest 1988). These simulations show that
ions can be scattered back and forth across the shock by self-
generated waves, and Quest (1988) also points out that these
scattered ions can provide a seed population of cosmic rays.

Recently, the kinetic equations of ions were solved analyt-
ically for non-linear wave-fields near strong parallel shocks by
Malkov & Völk (1995) and Malkov (1998). These authors were
able to constrain the fraction of phase-space of the background
plasma that can be injected into the acceleration process as a re-
sult of the self-regulating interaction between wave generation
and particle streaming. Here we incorporate this self-consistent
analytical result in numerical solutions of the hydro-dynamical
equations together with the cosmic-ray transport equation. Our
simulations, therefore, provide the first time dependent solution
of the problem of modified shocks that includes a self-consistent
plasma physical injection model. This technique enables us to
determine the level of shock modification and acceleration ef-
ficiency in an evolving shock without a free parameter for the
injection process (Gieseler et al. 1999).

We describe the plasma physical injection model in some
more detail in Sect. 2 before we outline the coupled set of dy-
namical equations of the plasma and cosmic rays in Sect. 3,
together with details of the numerical method we used to solve
these equations. The results are presented in Sect. 4 and Sect. 5,
consisting of the time dependent evolution of the plasma prop-
erties, showing especially the modification of the velocity pro-
file and the momentum distributions of thermal and relativistic
cosmic-ray particles. In addition we present our results in the
form of a particle injection efficiency and an energy transfer
efficiency at modified strong shocks.

2. Injection model

2.1. Wave-particle interaction at parallel shocks

In supernova remnants (SNRs) the relative orientation of mag-
netic field and shock front can be very diverse, even in one
single object. For example, if a spherically symmetric shock
front expands in a region of homogeneous magnetic field, the
directions of the shock normal and the magnetic field change
over the shock surface from parallel to perpendicular. For nearly
perpendicular shocks the acceleration process can be very fast
and effective due to reflections upstream of the shock (Naito &
Takahara 1995). However, the velocity of the intersection point
of shock and magnetic field in highly oblique shocks can be
close to light velocity. This can suppress the injection efficiency
of thermal particles, which are effectively tied to magnetic field
lines. That is because the velocity distribution function of ther-
mal protons, which we shall assume to be Maxwellian, drops
sharply towards high energies. This purely kinematical effect
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Fig. 1.Cartoon of the injection model in the shock-frame phase-space.
Plasma is moving towards−x into the shock with velocity−us and
gets compressed, heated and decelerated to the downstream velocity
−u2. Particles with positive velocity can stream back to upstream along
the magnetic fieldB0. These particles provide the beam, which gen-
erates the magnetic field waves. The magnetic field wave is shown
schematically in configuration space. The wave amplitude, frequency,
and damping length is shown only qualitatively.

has been investigated by Baring et al. (1993). Therefore, re-
gions of SNRs where quasi-parallel shocks exist, are likely to
be where the most effective injection occurs. On the other hand,
effective acceleration, i.e. short acceleration time scales and
hard spectra, may be realized in other parts of a SNR, where an
oblique geometry of magnetic field and shock normal is found.

For quasi-parallel shocks, where the shock propagates along
the mean magnetic field (x-direction), the transport properties
along the mean field direction are most important. We will as-
sume this case, with the fieldB0 parallel to the shock nor-
mal. The spatial diffusion of particles is produced by magneto-
hydrodynamic waves, which are in turn generated by par-
ticles streaming along the magnetic field,B0. We refer to
Malkov (1998) for an extended analytical description of the
particle-wave interaction for low-momentum particles, and we
describe here only the results which are relevant for the impli-
cation of this model in our simulations of the time dependent
acceleration at modified shocks. When particles are streaming
along the magnetic field in the upstream direction, waves are
generated due to the ion cyclotron instability. The resulting up-
stream magnetic field, which corresponds to a circularly polar-
ized wave, can be written as

B = B0ex + B⊥(ey cos k0x − ez sin k0x). (1)

The amplitudeB⊥ will be amplified downstream of the shocks
by a factorr = ρd/ρ. The downstream field can be described
by a parameterε, for which, following Malkov, we assume
ε := B0/B⊥ � 1, in the case of strong shocks. Note that
the perpendicular component of the magnetic field leads ef-
fectively to an alternating field downstream of the shock for
particles moving along the shock normal (see Fig. 1).

2.2. Thermal leakage model

The particles with a large enough gyro radius

rg⊥ = p c sinα/(eB⊥) > 1/k0 (2)

can have an effective velocity with respect to the wave frame,
i.e. the downstream plasma would be transparent. Some of these
particles that are in the appropriate part of the phase space (de-
pending on the shock speed) would be able to cross the shock
from downstream to upstream. For the protons of the plasma, the
resonance condition for the cyclotron generation of the Alfvén
waves givesk0〈v〉 ≈ ω0 = ω⊥B0/B⊥, where the cyclotron
frequency of protons is given byω⊥ = eB⊥/(mpc), and〈v〉 is
the mean downstream thermal velocity of the protons. We now
have for the thermal protonsk0rg⊥ ≈ ε � 1. This means that
most of the downstream thermal protons would be confined by
the wave, and only particles with higher velocity in the tail of
the Maxwellian distribution are able to leak through the shock.
Ions with mass-to-charge ratio higher than protons have a pro-
portionally larger gyro radius, so that the injection efficiency of
protons would yield a lower limit for the less magnetized ions.
On the other hand, for thermal electrons a plasma with such
proton generated waves would have a reduced transparency due
to the smaller gyro radius of the electrons. However, reflection
of electrons (and protons) off the shock could become efficient
with increasing wave amplitude and possibly aid in their in-
jection (e.g. Levinson 1996; McClements et al. 1997). In the
following we will focus on the protons, which carry most of the
energy and momentum of the plasma.

2.3. Transparency function

To find the part of the thermal distribution for which the mag-
netized plasma is transparent, and, which, therefore, forms the
“injection pool”, Malkov (1998) solves analytically the equa-
tions of motion for protons in self-generated waves. He finds a
transparency functionτesc, which expresses the fraction of par-
ticles that are able to leak through the magnetic waves, divided
by the part of the phase space for which particles would be
able to cross from downstream to upstream when no waves are
present. For the adiabatic wave particle interaction the trans-
parency function is given by Malkov (1998) Eq. (33), with
τesc = 2 νesc/(1 − u2/v), wherev is the particle velocity and
u2 = us/r is the velocity of the shock in the downstream plasma
frame. Hereνesc is the fraction of the particles streaming back
from downstream to upstream. This quantity is divided by the
fraction of particles that would be able to escape upstream in
the absence of waves. In order not to further increase the com-
plexity of our numerical simulation, we use here the following
approximation of the representation given in Malkov (1998):

τesc(v, u2) = H [ṽ − (1 + ε)]
(
1 − u2

v

)−1
(

1 − 1
ṽ

)

· exp
{

− [ṽ − (1 + ε)]−2
}

, (3)

where the particle velocity is normalized toṽ = vk0/ω⊥ andH
is the Heaviside step function. We argued above thatω⊥/k0 '
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Fig. 2.Transparency function Eq. (3) vs. the normalized particle veloc-
ity ṽ = vk0/ω⊥ for ε = 0.35 (solid line). Shown as a dashed line is
the transparency function given in Fig. 2 of Malkov & Völk (1998).

u2/ε (see Malkov 1998, Eq. 42). The transparency function now
solely depends on the shock velocity in the downstream flow
frame,u2, the particle velocity,v, and the relative amplitude of
the wave,ε.

The calculation of the transparency function and the wave-
amplitudeε uses the ergodicity of the downstream phase-space
for the randomized motion of particles in the high-amplitude
wave field. The upstream wave field is generated by a beam
of leaking particles whose energy density is calculated from
the corresponding area of the downstream phase-space. From
the energy density of this beam the upstream magnetic-field
wave amplitude is determined self-consistently (Malkov 1998).2

Because of this feedback Malkov was able to constrain the
quantity ε as0.3 <∼ ε <∼ 0.4, leaving essentially no free pa-
rameter. Comparison with hybrid plasma simulations suggests
0.25 <∼ ε <∼ 0.35 (Malkov & Völk 1998), consistent with
their analytical results. This constraint on the wave-amplitude
B⊥/B0 = 1/ε defines the level to which the particle-wave in-
teraction adjusts. With the estimation of this amplitude there
is no free parameter describing the level of the beam strength
for the injection, and, therefore, the injection efficiency. The
advantage of our approach presented here is that quantities
like the plasma velocity and particle momentum distribution
are calculated self-consistently by solving simultaneously the
hydro-dynamical equations together with the cosmic-ray trans-
port equation (see Sect. 3.1).

The function (3) is plotted in Fig. 2 forε = 0.35 vs. the
particle velocity normalized tõv = vk0/ω⊥. In Fig. 2 we have
also reproduced this function as given in Fig. 2 of Malkov &
Völk (1998) to allow a direct comparison. The strong velocity

2 Especially downstream, whereB0/B⊥ � 1, the particle-wave
interaction can by no means described by quasi-linear theory, which
would be valid in the opposite case, i.e. for incoherent waves with small
amplitudes. In fact, the calculation of the transparency function isnot
based on results of the quasi-linear theory (Malkov 1998; Malkov,
private communication). This point is noteworthy, because of exist-
ing mis-interpretations of the work of Malkov (1998) in the literature
(Baring 1999).

Fig. 3. Transparency function Eq. (3) vs. the normalized particle ve-
locity ṽ = v/u2 for different values ofε. We used the relation
ω⊥/k0 ' u2/ε (see text).

dependence and also the asymptotic behavior is modeled rea-
sonably well by the representation Eq. (3). In the normalization
of Fig. 2, the dependence onε is very weak, and, therefore, not
shown. To illustrate the dependence of the transparency func-
tion on small variations of the field amplitude, it is better to
choose a different normalization. Therefore, the transparency
function Eq. (3) is shown in Fig. 3 vs. the velocity normalized
to ṽ = v/u2 for the maximal allowed range inε, as described
above.

3. Model

3.1. Dynamical equations

The standard hydro-dynamical equations of mass, momentum
and energy conservation for a gas with velocityu(x, t), and
densityρ(x, t), corrected for CR pressure effects are given by

dρ

dt
= −ρ

∂u

∂x
, (4)

ρ
du

dt
= − ∂

∂x
(Pg + Pc) , (5)

ρ
deg

dt
= − ∂

∂x
[u(Pg + Pc)] + Pc

∂u

∂x
− S(x, t) , (6)

wherePg andPc are the gas and the CR pressure, respectively,
and eg = Pg/ρ(γg − 1) + u2/2 is the total energy density
of the gas per unit mass. Hered/dt ≡ ∂/∂t + u∂/∂x is the
total Lagrangian time derivative. We assumeγg = 5/3 for the
thermal gas adiabatic index throughout this work. The injection
energy loss termS(x, t) accounts for the energy transferred to
high energy particles and will be discussed later. Eqs. (4)–(6) are
solved using a Total Variation Diminishing (TVD) code based
on the scheme of Harten (1983).

We assume that the shock Mach numberM = us/cs (with
cs = (γP/ρ)1/2 the upstream sound speed) exceeds the Alfvén
Mach numberMA = us/cA � M (with cA = B/(4πρ)1/2 the
upstream Alfv́en speed). Then the diffusion-convection equa-
tion, which describes the time evolution of the phase-space den-
sity f(p, x, t) of the high energy CRs (e.g. Skilling 1975), takes
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the form:

df

dt
=

1
3

∂u

∂x
p

∂f

∂p
+

∂

∂x

(
κ(x, p)

∂

∂x
f

)
. (7)

The diffusion coefficientκ(p, x) is assumed to be a scalar.
Transforming to the variablesy := ln(p) and g(y, x, t) :=
p4f(p, x, t) (cf. Falle & Giddings 1987; Kang & Jones 1991),
Eq. (7) can be written as

dg

dt
=

1
3

∂u

∂x

(
∂g

∂y
− 4g

)
+

∂

∂x

(
κ(y, x)

∂

∂x
g

)
. (8)

This equation is solved using an implicit Crank-Nicholson
scheme, which is second order in space and time (see e.g. Falle
& Giddings 1987).

The high energy particles provide an additional pressure
to the system that has to be included in the set of hydro-
dynamical equations (withp normalized to the proton momen-
tump/mpc → p):

Pc =
4
3
πmpc

2

∞∫
0

(f − fM) p4 dp√
p2 + 1

. (9)

This definition of the CR pressurePc includes the difference of
the phase-space density from the Maxwellian distributionfM

and defines the sub-population which we identify as CRs. The
CR energy density is defined as

Ec = 4πmpc
2

∞∫
0

(f − fM) p2(
√

p2 + 1 − 1) dp . (10)

3.2. Injection scheme

We do not include an additional injection term in Eq. (8), be-
cause in our model injection is described self-consistently from
the thermal distribution. Therefore, the lower boundary of the
momentum distribution of the CR population must match the
upper boundary of the momentum distribution of the gas. The
distinction between these populations is, of course, only techni-
cal, and defined by the validity of the relevant dynamical equa-
tions. We use a Maxwell distribution according to the actual
density and temperature of the plasma. Instead of a fixed mo-
mentum boundary we use here the transparency functionτesc to
define where the lower boundary of the CR momentum distri-
bution matches the momentum distribution of the bulk plasma.
The injection into the high energy part of the phase-space dis-
tribution (i.e. the CRs) is then directly provided by the bulk of
the plasma.

The initial Maxwellian phase-space densityfM(p, x, t) is
given by:

gM(p, x, t) = p4fM(p, x, t)

=
n(x, t)p4

(2πmp kBT )3/2 exp
( −p2

2mp kBT

)
, (11)

wheren(x, t) = ρ/mp is the particle number density, and the
temperature is defined by the local gas pressurePg and density

ρ according toT = µmpPg/ρkB. Hereµ is the mean molec-
ular weight which is assumed to be one, andkB is the Boltz-
mann constant. The details of how the momentum distribution
is calculated in a time step fromt − ∆t to t are as follows.
First we define the CR part of the momentum distribution by
gCR(t−∆t) = g(t−∆t)−gM(t−∆t). Now the CR diffusion-
convection equation (Eq. 8) is solved for the entire momentum
space, including the thermal Maxwell distribution, to find the
updated distribution functioñg(p, x, t). For momenta below the
critical momentum ofτesc(pcrit) ≡ 0 any particle acceleration
must be suppressed, and therefore the result of Eq. (8) is rejected
by restoring the Maxwellian distribution given in Eq. (11). For
momenta above the critical momentum and upstream of the
shock, we use the transparency function as a filter forg̃(p, x, t)
as described below, sinceτesc(p, t) corresponds to the fraction
of the phase-space density at a given momentum that can cross
the shock from downstream to upstream. The final distribution
at timet is then given byg(p, x, t) in the following way:

g̃CR(p, x, t) = g̃(p, x, t) − gM(p, x, t) , (12)

gCR(p, x, t) = gCR(p, x, t − ∆t) + τesc(p, t)
· [g̃CR(p, x, t) − gCR(p, x, t − ∆t)] , (13)

g(p, x, t) = gCR(p, x, t) + gM(p, x, t) . (14)

So effectively at the lower momentum limit whereτesc(p) ≡ 0
the Eq. (8) has no effect at all, while at the higher momen-
tum limit whereτesc(p) ≡ 1 the result of Eq. (8) is used with-
out further modification. Only in the intermediate momentum
regime where0 < τesc(p) < 1, the transparency function rep-
resents the injection process (i.e. thermal leakage). Thus the
transparency function defines self-consistently the momentum
boundary above which the particle acceleration mechanism can
work, and also defines the transition region between thermal
plasma and accelerated particles.

The particle injection rate into the CR population can be
estimated from the adiabatic change of the momentum due to
the velocity gradient of the flow:

Q(p, x, t) = 4π p2f(p, x, t)
(

∂p′

∂t

)
p

= −4π

3
p3f(p, x, t)

∂u

∂x
. (15)

Then the energy loss rate of the gas can be written as

S(x, t) =
1
2
mpc2

∞∫
0

∂τesc(p, t)
∂p

p2Q(p, x, t) dp , (16)

= −2
3
π mpc2 ∂u

∂x

∞∫
0

∂τesc(p, t)
∂p

p5f(p, x, t) dp .

Note here the condition∂τesc(p, t)/∂p 6= 0 in fact defines the
“injection pool” where the thermal leakage takes place. Due
to the steep dependence of both the Maxwell distribution and
the transparency function on the particle momentum, the mo-
mentum range of the injection pool is well restricted. Either
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below or above this momentum rangeτesc(p) = constant, so
∂τesc(p, t)/∂p = 0. If the transparency function is given by a
step functionτesc(p) = H(p − pinj), it becomes the injection
scheme adopted by Kang & Jones (1995, 1997) in which the in-
jection takes place at a single injection momentum rather than
an extended momentum range.

The transparency functionτesc given by Eq. (3) depends on
the downstream plasma velocity, which is averaged over the dif-
fusion length of the particles with momentum at the injection
threshold. This dependence is also important for the injection
efficiency, and leads to a regulation mechanism similar to the
above beam wave interaction. If the initial injection is so strong
that a significant amount of energy is transferred from the gas
to high energy particles, the downstream plasma cools, and, in
addition, the downstream bulk velocity decreases in the shock
frame due to the shock modification of the cosmic-ray popu-
lation. Because the injection pool is in the high energy tail of
the Maxwellian distribution of the gas, the cooling decreases
significantly the injection rate. However, the deceleration, in
turn, allows for a modest increase of the phase-space of parti-
cles that can be injected. This is expressed by theu2 dependence
of Eq. (3). This velocity dependence balances partly the reduc-
tion of injection due to the cooling of the plasma. Remarkably,
these two effects lead to a veryweakdependence of the injection
efficiency onε in the vicinity of ε ≈ 0.35.

3.3. Diffusion model

Since the injection process is included self-consistently, the dif-
fusion coefficient is the only remaining free parameter in our
model. We assume the particle diffusion is based on the scat-
tering off the self-generated waves which have a field com-
ponent perpendicular to the plasma flow. The compression of
the plasma leads to an amplification of these waves, which
is described by scaling the diffusion coefficient asκ ∝ 1/ρ.
In our one dimensional model we have to describe diffusion
along the mean magnetic field. The lower limit for the dif-
fusion coefficient is the Bohm diffusion coefficientκB(p) =
(3 ·1022 cm2/s/BµG) p2/(1 + p2)1/2 , whereBµG is the mag-
netic field strength in units of micro-gauss. For the present cal-
culations we assume the diffusion coefficient is simply related
to Bohm diffusion as

κ(p) = ζ κB ρ0/ρ(x) . (17)

We have introduced the factorζ to account for the higher dif-
fusion in the direction of the mean magnetic field, because this
direction is parallel to the shock normal, and, therefore, relevant
for the acceleration process at quasi-parallel shocks. Although
the time scale for the cosmic-ray acceleration does depend on
the diffusion coefficient, the basic self regulation process for the
injection problem which we investigate here is not dependent
on the choice ofζ. Therefore, since our study intends to focus
on the general time dependent behavior of this injection model,
we do not include a completely self-consistent scattering model,
where the diffusion coefficient is coupled to the spectrum of the
Alfv én waves.

3.4. Initial and boundary conditions

We assume there is no pre-existing CR population, so the initial
particle distribution is purely Maxwellian with the local plasma
temperature and density. We use open boundary conditions for
the description of the thermal plasma in our simulations. In mo-
mentum space, the lower boundary is provided by the Maxwell
distribution as discussed above. At the highest momentum and
also at the upstream boundary in configuration-space we use a
‘free escape’ boundary. Downstream we use a ‘no diffusive flux’
boundary, where the cosmic-ray density is always kept constant
across the boundary. However, the grid size was chosen so large
in the simulations we present here, that the cosmic-ray pressure
is at all times essentially zero at both boundaries.

4. Results for strong shocks

First we consider a strong shock with an initial Mach number
of M = 30. Unlike an ordinary hydrodynamic simulation, the
simulation of the CR shock acceleration requires specification
of three physical parameters,u0/c, ρ0/mp, and the shock Mach
number in addition to the diffusion coefficient. We adopted
the following nominal physical scales for physical parameters:
u0 = 5000 km s−1, ρ0/mp = 0.03 cm−3, t0 = 4.0 · 104 s,
x0 = 2.0 · 1013 cm,Pg0 = ρ0u

2
0 = 1.25 · 10−8 erg cm−3. We

useζ = 100 for the simulations presented here, and a magnetic
field of B = 3µG. The initial conditions are specified as fol-
lows: ρup = ρ0, uup = −u0, andPg,up = 6.667 · 10−4Pg0
in the upstream region, whileρd = 3.987ρ0, u2 = −0.25u0,
Pg,d = 0.75Pg0 downstream. These values reflect the shock
jump conditions in the rest-frame of the shock.

We define the diffusion length and time at a given momen-
tum asld(p) = κ(p)/u0 andtd(p) = κ(p)/u2

0. For a proper
convergence, the spatial grid size should be smaller than the
diffusion length of the injection pool particles (ld/x0 ∼ 0.04
in upstream forpinj ∼ 0.02). On the other hand, the spatial
region of the calculation in upstream and downstream should
be larger than the diffusion length-scale of the particles with
the highest energies reached at the end of our simulation period
(ld/x0 ∼ 230 for pmax ∼ 2.5). So we used 51200 uniform grid
zones forx/x0 = [−250, 250], with the shock initially atx = 0
and the grid size∆x/x0 = 0.01 = 0.25 · ld(pinj)/x0. We use
128 uniform grid zones inlog(p) for log(p) = [−3.0, 0.477].
We integrate the solutions untilt = 240t0 which corresponds
to td for pmax ∼ 2.5, so the CR particles became only mildly
relativistic by the end of our simulations.

4.1. Dynamical evolution

Fig. 4 shows the normalized gas densityρ(x), gas pressure
Pg(x), plasma velocityu(x) and the cosmic-ray pressurePc(x)
over the spatial lengthx, for different times. This shows clearly
the basic features of the shock modification by a diffusive com-
ponent; that is, the adiabatic precursor compression and the sub-
shock. The CR pressurePc is responsible for the deceleration
and compression of the plasma flow in the precursor region up-
stream of the sub-shock, which still remains strong. As a result,
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Fig. 4.Gas densityρ/ρ0, pressurePg/Pg0, velocityu/u0, and cosmic-
ray pressurePc/Pg0, at timest = 0 (dotted),t = 120 t0 (dashed)
andt = 240 t0 (solid line). The shock Mach number isM = 30.0,
ε = 0.35 and ζ = 100. The initial upstream gas pressure isP =
6.667 · 10−4Pg0.

the gas is compressed to higher density downstream of the sub-
shock.

The cosmic-ray pressure immediately downstream of the
sub-shock has not reached a steady state yet. The reason is that
for a the non-thermal particles with a momentum distribution
f ∝ p−s with s ≤ 4, the energy density is an increasing function
of pmax. This applies even if the injection is shut down com-
pletely, like for anδ-function type injection in time, as shown
by Drury (1983). We expect thatPc will continue to increase
after our integration timet = 240t0, which leads to a signifi-
cant modification of the shock structure and to the steepening of
the power-law distribution of suprathermal particles. The sim-
ulations of such non-linear evolution, however, require much
greater spatial region and grid zones and also longer integration
time than what we could afford in our simulations.

In real astrophysical shocks, the energy density is limited
by radiation losses in the case of electrons or more generally by
particle escape due to the finite extent of the acceleration region.
For the maximum energy of particles (pmax ∼ 2.5) achieved by
t = 240 t0 in this simulation, neither effect is important, and,
therefore, not included.

4.2. Energy distribution

The phase-space distributiong(p, x, t) ≡ p4 f(p, x, t) imme-
diately (three zones) behind the sub-shock is shown in Fig. 5
for three different times. Initially this distribution is given by a
Maxwell distribution, as shown by the dotted line. At the ther-

Fig. 5. Phase-space densityg = p4f vs. proton momentum imme-
diately downstream of the sub-shock. Also shown is the transparency
functionτesc. Both functions are presented fort = 0 (dotted),t = 10 t0
(dot-dashed),t = 120 t0 (dashed), andt = 240 t0 (solid line). For the
parameters used see Fig. 4 and corresponding text.

mal part of the distribution the cooling of the postshock gas due
to the energy flux into the CR particles is responsible for the
shift of the Maxwellian distribution towards lower energies. We
have also plotted the transparency functionτesc at the same sim-
ulation times. According to Eq. (16) the injection rate into the
non-thermal distribution depends on overlap of∂τesc/∂p and
g(p) that determines the injection pool. One can see that ini-
tially the injection rate is high and so the postshock gas cools
quickly, resulting in narrowing down of the injection pool. This
causes the injection rate to decrease. But then the transparency
function also shifts toward lower momenta, because the down-
stream plasma velocityu2 decreases as the postshock gas cools.
The combination of the shift ofτesc toward lower momenta and
the decrease of the particles in the Maxwellian tail due to the gas
cooling leads to the self-regulation of the injection rate at a quite
stable value. According to the plot ofg(p) at t = 120 t0 and
t = 240 t0, the Maxwell distribution turns into a power-law at
an almost constant “effective injection momentum” which de-
termines the magnitude of the CR distribution functiong(p) at a
stable value (about1/200 of the thermal peak). The value of this
constant effective injection momentum can be translated into the
parameterc1 = pinj/pth ∼ 2.3 (wherepth = 2

√
mpkBT ) de-

fined by Kang & Jones (1995). But this is somewhat larger than
what they used (c1 = 1.9 − 1.95).

The narrow injection pool also leads to a rather sharp transi-
tion from the Maxwell distribution to the non-thermal part start-
ing shortly above the effective injection momentum (see Fig. 5).
The canonical result in the test particle limit,g(p) = p4 f(p) =
p4 p−s =constant, for a strong shock withs = 3r/(r−1) = 4 is
reproduced very well in our simulations. The same energy spec-
trum is shown in Fig. 6 in the form of the omni-directional flux
F (E)dE ∝ v p2f(p)dp vs. proton kinetic energy downstream
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Fig. 6.Omni-directional flux vs. proton kinetic energy, fort = 0 (dot-
ted), t = 10 t0 (dot-dashed),t = 120 t0 (dashed), andt = 240 t0
(solid line). These distributions are identical to those shown in Fig. 5.
For the parameters used see Fig. 4 and corresponding text.

of the shock normalized tot = 0. At energies above the injec-
tion pool we expect, for the strong shock (r ' 4) simulated here,
the resultF (E) ∝ E−σ, with σ = {(r + 2)/(r − 1)}/2 = 1,
which is reproduced with high accuracy.

In using the standard cosmic-ray transport equation, we
have, of course, made use of the diffusion approximation, which
may introduce an error especially forv ' u2. Using an eigen-
function method, Kirk & Schneider (1989) have explicitly cal-
culated the angular distribution of accelerated particles and ac-
counted for effects of a strong anisotropy especially at low par-
ticle velocities. They were able to calculate the injection ef-
ficiency without recourse to the diffusion approximation, and
found always lower efficiencies compared to those in the diffu-
sion approximation. Using the initial thermal distribution, we
have estimated an effective injection momentum from the peak
of the distribution function,gM(p)τesc(p). For the shock param-
eters considered here and forε = 0.35 we get an effective initial
injection velocity of about6700 km s−1 (in the shock frame).
For this injection velocity,r = 4 andu0 = 5000 km s−1, they
estimate a reduction effect of≈ 8%, leaving the diffusion ap-
proximation as quite reasonable even in this regime.

4.3. Injection and acceleration efficiencies

To describe the injection efficiency often a parameterξ is used
for the fraction of the in-flowing plasma particles that are in-
stantaneously accelerated to a fixed injection momentumpinj

(e.g. Falle & Giddings 1987; Dorfi 1990; Jones & Kang 1990;
Zank et al. 1993; Berezhko et al. 1994). The injection energy

flux I transferred to CRs is then given by

I = ξ
ρ1u1

m

p2
inj

2m
, (18)

whereu1 is the upstream plasma velocity in the shock frame, and
ρ1 is the upstream density. From the fact that the injected energy
flux I must be equal to the spatial integral of the injection energy
loss termS(x), that is,I =

∫
S(x) dx and by assuming momen-

tarily a step function for the transparencyτesc(p) = H(p−pinj),
we get:

ξ(t) = −4π

3

∫
∂u

∂x

p3
injf(pinj)
n1 u1

dx , (19)

where n1 = ρ1/m is the upstream number density. This
is equivalent to the injection parameter used by Kang &
Jones (1995). The so-defined injection parameterξ is, however,
not an exact measure of the number of particles contributing to
the population of cosmic rays, because the acceleration process
cannot be described by shifting particles instantaneous from
thermal energies to an injection momentumpinj. Furthermore,ξ
depends strongly on the chosen injection momentumpinj, which
is not a fixed single parameter in our numerical simulation.

A method to measure the injection efficiency without spec-
ifying the injection momentum, is to compare the number of
particles in the CR part to the number of particles swept through
the shock. According to our definition of the CR population we
can write for the CR number density

nCR(x, t) =
∫

fCR(p, x, t)d3p

≡
∫

(f(p, x, t) − fM(p, x, t)) d3p . (20)

The fraction of particles that has been swept through the shock
after the timet, and then injected into the cosmic-ray distribution
is then given by

ξ∗(t) =
∫

nCR(x, t)dx

n1u1 t
. (21)

The time development of this injection efficiency is plotted in
Fig. 7 for three values of the inverse wave amplitudeε. Recall
that Malkov (1998) found0.3 <∼ ε <∼ 0.4. In the very begin-
ning of the simulation the injection does depend strongly on
the wave-amplitude, because of the very steep dependence of
the Maxwell distribution at the injection energies. However, as
described above, a strong initial injection leads to a temperature
decrease of the plasma, and to a shift of the Maxwell distri-
bution, which balances this effect. Therefore at later times the
fraction of injected particles,ξ∗, does not depend strongly on the
initial wave-amplitude. At timet/t0 = 250 (or t = 1.0 · 107s)
we get a fraction of injected particles ofξ∗ = (1.5±0.4) ·10−3

for the intervalε = 0.35 ± 0.5.
To measure the efficiency of the particle acceleration at a

shock front, we compare the energy flux in cosmic rays to the
total energy which is available from the downstream plasma
flow. This energy consists of the sum of kinetic energy and the
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Fig. 7. Energy efficiencyη(t) and the fraction of cosmic-ray particles
ξ∗(t) for three values of the inverse wave-amplitudeε at a strong,
M = 30, shock. For the parameters used see Fig. 4 and corresponding
text.

gas enthalpy. The fraction of this initial energy flux, which is
transferred to CRs is given by

η(t) =
γc(t)

γc(t)−1ud(t)Pc(t)
1
2ρdu3

d + γg
γg−1udPg,d

, (22)

whereud = us(1 − 1/r) is the initial downstream plasma ve-
locity in the upstream rest frame. The definition of the efficiency
η(t) is similar to the definition from V̈olk et al. (1984). However,
Eq. (22) compares the energy flux in CRs not only to the kinetic
energy flux of the gas, but also includes the gas enthalpy flux. We
measure the CR pressure immediately downstream of the sub-
shock, where it will first reach the constant downstream value,
in case a steady state does exist (see below). The time dependent
values are averaged over the intervalx/x0 = [−0.5u2t, . . . , 0]
in the shock frame to avoid influence of small scale modifi-
cations of the cosmic-ray pressure and plasma velocity on the
injection efficiency. When the quantitiesu2, Pc and γc have
reached steady-state distributions downstream of the sub-shock,
η(t) is also no longer time dependent.

The evolution of the energy efficiency,η(t), is plotted in
Fig. 7 for three different magnetic-field wave amplitudes. See
Fig. 4 and the description in Sect. 4 for the corresponding pa-
rameters. The caseε = 0.4 corresponds to the highest injection
efficiency and therefore leads to the highest cosmic-ray pressure.
To assure a vanishing value of the cosmic-ray pressure at the spa-
tial grid boundaries at all times, the calculation forε = 0.4 was

done on a somewhat larger grid with 60416 uniform zones for
x/x0 = [−300, 300]. For the valueε = 0.35, which was calcu-
lated by Malkov (1998), we see that about 20% of the available
energy in this shock is transferred into the cosmic-ray popu-
lation. The acceleration efficiency has, however, not reached a
real steady state value, but is increasing withη(t) ∝ tα with
α ≈ 0.1. The acceleration efficiency achieved by this time is
given byη = (18 ± 5)% for ε = 0.35 ± 0.5. Thus a substan-
tial amount of the initial energy flux at a shock front can be
transferred to a high energy part of the distribution, during the
relatively short time we have simulated here.

5. Results for weak shocks

When the initial compression ratio decreases for a weak shock,
the injection process is influenced in several ways by the change
in the plasma and magnetic field properties. To investigate the
effects of a lower compression ratio and lower Mach number on
the injection process we will consider an example withr = 2.5
andM = 2.24. At such a shock, the phase space for which
the downstream particles can re-cross the shock to upstream
is decreased compared to the strong shock case, because the
shock velocity in the downstream rest frameu2 = us/r is in-
versely proportional to the compression ratio. At the same time
the plasma is heated less, because the transformation of kinetic
energy to thermal energy depends also on the compression ratio;
∆kBT ∝ mPu2

s (1−1/r2). This shifts the downstream Maxwell
distribution to lower energies, as compared to higher compres-
sion, and, therefore, influences strongly the number of particles
in the momentum range making the potential injection pool. On
the other hand, at quasi-parallel shocks, the amplitude of the
magnetic field wave spectrumB⊥ is amplified downstream by
the factorr. For a decreasing compression ratio, the downstream
plasma becomes more transparent. This balances the effects of
the phase space and temperature changes described above. The
initial downstream (inverse) wave-amplitudeε = B0/B⊥ was
calculated to be in the intervalε ≈ [0.3, . . . , 0.4] in the limit
of strong shocks (Malkov 1998; Malkov & V̈olk 1998). An ex-
trapolation to weak shocks withr = 2.5 of this interval by mul-
tiplying ε with the factor of (4/2.5) givesε ≈ [0.48, . . . , 0.64].
However, the calculation of the transparency function was based
on the assumption of an high amplitude wave spectrum down-
stream (ε � 1). With decreasing wave amplitude the velocity
dependence of the transparency function changes towards its
asymptotic function, defined by particle kinematics without a
wave field:τ(v) = 0 for v < u2 andτ(v) = 1 for v ≥ u2.
On the other hand, this limit may be reached in reality only if
the resulting beam from downstream to upstream is too weak to
produce a magnetic field instability.

As an initial exploration of this behavior, we will present
here results for the spatial and momentum distributions and the
energy and particle injection efficiency for an inverse magnetic
fields amplitude parameterε in the rangeε = [0.4, . . . , 0.7]. We
have included the valueε = 0.4 to compare the results directly
to the strong shock case. This can demonstrate the principal
effect of weaker shocks on the injection process. The resulting
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Fig. 8.Gas densityρ/ρ0, pressurePg/Pg0, velocityu/u0, and cosmic-
ray pressurePc/Pg0, at timest = 0 (dotted),t = 70 t0 (dashed) and
t = 140 t0 (solid line). The shock Mach number isM = 2.24, ε = 0.6,
andζ = 100. The initial upstream gas pressure isP = 0.12Pg0.

injection efficiencies and shock modifications for all values of
ε shown here should be considered as lower limits for the weak
shock withr = 2.5 (M = 2.24) as described above.

The physical scales are specified as follows:t0 = 1.11 ·
105 s, x0 = 3.33 · 1013 cm, u0 = 3000 km s−1, ρ0/mp =
0.03 cm−3, Pg0 = 4.52 · 10−9 erg cm−3. We useζ = 100 for
the simulations presented here, and a magnetic field ofB =
3µG. The initial values for theM = 2.24 case areρup = ρ0,
uup = −u0, and Pg,up = 0.12Pg0 in the upstream region,
while ρd = 2.5ρ0, u2 = −0.4u0, and Pg,d = 0.72Pg0 in
the downstream. We have used 44032 uniform grid zones for
x/x0 = [−170, 130], with the shock initially atx = 0, and
128 uniform grid zones inlog(p) for log(p) = [−3.0, 0]. The
corresponding Mach number isM = 2.24.

Fig. 8 shows the normalized gas densityρ(x), gas pressure
Pg(x), plasma velocityu(x) and the cosmic-ray pressurePc(x)
over the spatial lengthx, for different times. Because the result-
ing non-thermal spectrum produced as a result of the injection
and particle acceleration is steeper than in the strong shock case,
the pressurePc in this distribution remains small compared to
the gas pressure at all times. As a result, the shock is modified
only slightly. Also the temperature of the downstream plasma
remains almost constant. Furthermore, because the energy den-
sity in non-thermal particles is not an increasing function in
time, the shock modification can reach a steady state earlier, as
compared to the strong shock case. In fact, at timet = 140t0,
shown in Fig. 8, the pressurePg, Pc, the velocityu and the
densityρ immediately downstream has reached almost a steady
state.

Fig. 9. Phase-space densityg = p4f vs. proton momentum imme-
diately downstream of the sub-shock. Also shown is the transparency
functionτesc. Both functions are presented fort = 0 (dotted),t = 10 t0
(dot-dashed),t = 70 t0 (dashed), andt = 140 t0 (solid line). For the
parameters used see Fig. 8 and corresponding text.

The downstream momentum distribution in Fig. 9 shows
clearly the steeper spectrum of the non-thermal part, which
asymptotes to the standard resultg(p) ∝ p−s+4 with s =
3r/(r−1) = 5 for r = 2.5. It can be seen also, that the thermal
part of the distribution is not as much modified as in the strong
shock case (compare Fig. 5). Because the modification of the
transparency function over time depends only on changes in the
downstream plasma velocity, it remains essentially unchanged.

The energy efficiencyη(t), as defined in Eq. (22), is lower
roughly by a factor of two compared to the strong shock case,
because of the steeper non-thermal spectrum and the resulting
energy density (compare Fig. 7 and Fig. 10). Our results for the
wave amplitude,0.5 ≤ ε ≤ 0.7, give the injection efficiency,
ξ∗ = (2.5± 0.7) · 10−3 at timet = 140t0 = 1.55 · 107s, where
the time evolution can be considered as almost a steady state.
The number of particles, which are in the non-thermal part is
comparable to the strong shock considered above at this time.
In addition, we point out that the application of the above de-
scribed injection model to weak shocks is an extrapolation, and
we believe would yield lower limits on the injection efficiency.

6. Conclusions

We have developed a numerical method to include self-
consistently the injection of the supra-thermal particles into the
cosmic-ray population at quasi-parallel shocks according to the
analytic solution of Malkov (1998). Toward this end, we have
adopted the “transparency function”τesc(v, u2) which expresses
the probability that supra-thermal particles at a given velocity
can leak upstream through the magnetic waves, based on non-
linear particle interactions with self-generated waves. We have
incorporated the transparency function into the existing numer-
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Fig. 10.Energy efficiencyη(t) and the fraction of cosmic-ray particles
ξ∗(t) for four values of the inverse wave-amplitudeε at a weak shock.
For the parameters used see Fig. 8 and corresponding text.

ical code which solves the cosmic-ray transport equation along
with the gas dynamics equations. In order to investigate the
interaction of high energy particles, accelerated by the Fermi
process, with the underlying plasma flowwithout using a free
parameter for the injection efficiency, we have applied our code
with the new injection scheme to both strong (M = 30) and
weak (M = 2.24) parallel shocks.

The main conclusions from the simulation results are as
follows:

1. The injection process is regulated by the overlap of the pop-
ulation of supra-thermal particles in the injection pool and
the function∂τesc(p, t)/∂p. As being in the high energy
tail of the Maxwell velocity distribution, the population in
the injection pool depends strongly on the gas temperature
and the particle momentum. The function∂τesc(p, t)/∂p be-
haves like a delta-function defined near a narrow injection
pool. As the postshock gas cools due to high initial injection,
the Maxwell distribution shifts to lower momenta. But the
transparency function also shifts to lower momenta, as well,
due to its dependence on the postshock flow velocity. As a
result, the injection rate reaches and stays at a stable value af-
ter a quick initial adjustment, and also depends only weakly
on the initial conditions. This self-regulated injection may
imply a broad application of our simulation methods.

2. The fraction of the background particles that are accelerated
to form the non-thermal part of the distribution turns out to
be in the range1.2 · 10−3 <∼ ξ∗ <∼ 1.9 · 10−3 for the range

of initial wave-amplitudes0.3 ≤ ε ≤ 0.4 at aM = 30
shock. For aM = 2.24 shock, a slightly higher injection
is achieved atξ∗ = (2.5 ± 0.7) · 10−3, but this could be a
lower limit. Such values for the particle injection efficiency
have been used as a parameter for spherically expanding
SNRs by several authors (Dorfi 1990; Jones & Kang 1992;
Berezhko et al. 1995; Berezhko & Völk 2000). These values
are well above the “critical injection rate” ofηcrit ∼ 10−4

above which spherical shocks of this Mach number are CR
dominated according to Berezhko et al. (1995).

3. Due to computational limitations of using a Bohm type dif-
fusion model, we have integrated our models until the max-
imum momentum reaches about(pmax/mpc) ∼ 1. For the
M = 30 shock model, the energy flux in the total CR dis-
tribution was about18% ± 5% of the energy flux in the
thermal plasma and shocks didn’t become CR dominated
and smoothed completely by the end of our simulations.
For theM = 2.24 shock model, the acceleration efficiency
is lower by a factor of two compared to the high Mach shock
because of the smaller velocity jump across the shock.

4. Just above the injection pool, the distribution function
changes sharply from a Maxwell distribution to an ap-
proximate power-law whose index is close to the test-
particle slope. We estimated this critical momentum as
pinj ∼ (2.2 − 2.3) · pth wherepth = 2

√
mpkBT . This

determines the number of particles in the injection pool
by f(pinj) ∝ exp(−p2

inj/2mpkBT ). For strong shocks this
translates into a distribution function at injection energies
of g(pinj) ∼ (1/100 − 1/200)g(pth).

While the weak shock model ofM = 2.24 reaches a steady-
state, the strong shock model ofM = 30 has not reached a
steady-state by the end of our simulation. We expect for the
strong shock that the CR pressure continues to increase and the
shock becomes CR dominated, leading to the greater total ve-
locity jump and more efficient acceleration. In realistic shocks
such as SNRs, however, escaping particles due to non-planar
geometry or lack of scattering at high momentum are likely to
become important. To resolve this non-linear evolution, much
longer physical time scales have to be simulated, until CRs reach
energies where escape is likely to be important. The key prob-
lem here is the range in configuration and momentum space that
has to be computed. Our method uses a grid with uniform cells
in configuration space, chosen fine enough to capture the evo-
lution of g(x, p) at near-thermal momenta where the diffusion
coefficient is proportional top2 (Bohm diffusion). This leads to
a computationally extremely expensive calculation, especially
because the grid has to be large enough to contain the diffusion
length scale of the highest momentum CRs. The problem can be
solved on a much larger time scale by using an adaptive mesh re-
finement (AMR) code with the shock tracking techniques (Kang
& Jones 1999). In the near future we plan to incorporate the in-
jection model presented here into the powerful shock tracking
AMR-code, to calculate the evolution of the phase-space dis-
tribution of the plasma during different phases of SNRs. This
would allow us to investigate with a plasma-physical based in-
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jection model how the slowly growing cosmic-ray pressure at a
strong shock eventually modifies the shock structure. A strong
modification will cause the velocity jump across the subshock to
decrease and the distribution function of the suprathermal par-
ticles to steepens. This might have further back reaction on the
injection efficiency. Also the CR distribution will deviate from
a simple power-law. For a calculation up to the highest energy
CRs, also the spherical geometry of a SNR should be taken into
account. Such an approach could lead to a consistent calcula-
tion of the complete phase-space distribution at quasi-parallel
shocks, and should be a promising step towards a calculation
of the overall efficiency of SNRs in producing CRs during their
evolution.

For oblique shocks, the injection efficiencies calculated here
for a parallel shock should define an upper limit, because the
statistical probability of a particle to cross the shock from down-
stream to upstream decreases with the intersection velocity of
magnetic field and shock front. This kinematical effect was in-
vestigated by Baring et al. (1993) with the use of Monte-Carlo
simulations. However, in the model we have incorporated here,
the injection is already suppressed strongly (compared to the
purely kinematical model) by the reduced transparency of the
plasma due to the high amplitude Alfvén waves. We point out,
that for oblique shocks, the filtering due to Alfvén waves may be
reduced due to the decreased downstream amplification of the
wave amplitude. This would allow lower energy particles to be
injected, and the kinematical effect could be partly balanced. As
a result, we speculate that the dependence on the obliquity might
be significantly weaker than calculated by Baring et al. (1993).
Resolution of that important question must await more complete
understanding of the injection physics.

In summary, we have shown that the process of particle
acceleration under consideration of a plasma physical injection
model underlies a rather effective self-regulation. Apart from the
direct particle-wave interaction described by the injection model
itself, also the energetic feedback of the energy transfer between
thermal plasma and cosmic-rays keeps the fraction of particles
in the non-thermal distribution at roughly10−3 of the particles
swept through the shock. These self-regulation mechanisms lead
to a quite stable injection efficiency, which depends weakly on
the initial conditions.
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